
Viper: A High-Performance I/O Framework for Transparently
Updating, Storing, and Transferring Deep Neural NetworkModels

Jie Ye
∗

Jaime Cernuda
∗

Illinois Institute of Technology

Chicago, IL, USA

Neeraj Rajesh
∗

Keith Bateman
∗

Illinois Institute of Technology

Chicago, IL, USA

Orcun Yildiz
†

Tom Peterka
†

Argonne National Laboratory

Lemont, IL, USA

Arnur Nigmetov
‡

Dmitriy Morozov
‡

Lawrence Berkeley National Lab

Berkeley, CA, USA

Xian-He Sun
∗

Anthony Kougkas
∗

Illinois Institute of Technology

Chicago, IL, USA

Bogdan Nicolae
†

Argonne National Laboratory

Lemont, IL, USA

ABSTRACT
Scientific workflows increasingly need to train a DNN model in

real-time during an experiment (e.g. using ground truth from a sim-

ulation), while using it at the same time for inferences. Instead of

sharing the same model instance, the training (producer) and infer-

ence server (consumer) often use different model replicas that are

kept synchronized. In addition to efficient I/O techniques to keep the

model replica of the producer and consumer synchronized, there is

another important trade-off: frequent model updates enhance infer-

ence quality but may slow down training; infrequent updates may

lead to less precise inference results. To address these challenges, we

introduce Viper: a new I/O framework designed to determine a near-

optimal checkpoint schedule and accelerate the delivery of the latest

model updates. Viper builds an inference performance predictor to

identify the optimal checkpoint schedule to balance the trade-off be-

tween training slowdown and inference quality improvement. It also

creates a memory-first model transfer engine to accelerate model

delivery through direct memory-to-memory communication. Our

experiments show that Viper can reduce the model update latency

by ≈9x using the GPU-to-GPU data transfer engine and ≈3x using
the DRAM-to-DRAM host data transfer. The checkpoint schedule

obtained from Viper’s predictor also demonstrates improved cumu-

lative inference accuracy compared to the baseline of epoch-based

solutions.
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1 INTRODUCTION
Motivation: Deep Learning (DL) has attracted significant atten-

tion due to its robust and powerful capacity to extract insights from

available data. IntegratingDeep Learning (DL)with traditional High

Performance Computing (HPC) simulations has shown significant

promise in accelerating scientific discoveries [2]. Many scientific

workflows employ DL at least partially: climate modeling [22], parti-

cle physical simulations [3], computational fluid dynamics [27], and

virtual drug response prediction [29].

Traditionally, DL is employed in offline fashion, i.e., the learning
model is pre-trained, and then used for inferences in the application

workflow. However, offline DL is often insufficient, especially when

the learning patterns are specific to individual workflow runs or

when they fluctuate during the workflow execution [6], prompting

theneed to train and/or refine learningmodels on-the-fly. In this case,

a naive solution that pauses the workflow during the training/fine-

tuning leads to unacceptable runtime overhead and/or missed op-

portunities due to real-time constraints.

For example, consider the case of Ptychographic image recon-

struction [1], which studies an unknown object by subjecting it to a

high-intensity photon beam. As the beam passes through the object,

it creates diffraction patterns that are captured by a sensor (at the

edge) and analyzed further (on a remote HPC machine) to obtain

the equivalent of an X-ray image at a small scale (e.g., molecular

level). To reduce the transfer overhead between the edge and the

HPCmachine, generative learning models (e.g., PtychoNN [1]) are

used to pre-process the diffraction patterns. However, each object

is unique and the beam cannot be stopped. Therefore, we cannot

use pre-trained model or pause the workflow until we trained one.

Instead, we need to apply an online solution consisting of the follow-

ing steps: (1) training warm-up: transfer the full diffraction patterns
to theHPCmachine, use a classic (but expensive) algorithm to recon-

struct the images, while at the same time training a learning model
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using these images as ground truth; (2) switch to inferences: as soon
as the learning model is accurate enough, transfer it to the edge and

use it to pre-process the diffraction patterns; (3)fine-tuning: continue
receiving a subset of the full diffraction patterns, refine the learning

model (continue the training), and periodically send a checkpoint

of the model to the edge to improve the quality of the inferences.

Implementing such a dynamic learning solution in HPC work-

flows is subject to two important questions: (1) how often to check-

point a model during the fine-tuning step to improve the quality of

the inferences; (2) how to design efficient techniques to transfer a

checkpoint of the model from the source of the training (producer)

to the destination where inferences are running (consumer). It is

important to note that these two questions are not independent of

each other: if we checkpoint often, then the quality of the inferences

does not lag behind the quality of the training (which results in

better inferences), but at the expense of slowing down the training

due to additional overheads (which depend on the technique used

to capture and transfer the model checkpoints). This results in a

trade-off we aim to solve in this paper. Specifically, given a producer,

a consumer, and 𝑁 inferences that we need to complete after the

warm-up, we aim to maximize the average quality of the 𝑁 infer-

ences by providing: (1) a near-optimal checkpoint schedule (i.e., at
what epoch and what iteration during training to take a checkpoint)

based on (2) high-performance techniques to capture and transfer

model checkpoints between the producer and the consumer. For

simplicity, in this paper, we assume the producer and the consumer

are deployed on two separate nodes. In general, they could be dis-

tributed (e.g. multiple producers running data-parallel training and

multiple consumers running parallel inference model on replicas).

Limitations of state-of-art: A typical streamlined producer-

consumer setup used in practice relies on a model repository as an

intermediate staging area: the producer writes new model check-

points to the repository, while the consumer reads the newmodel

checkpoints and uses them for inferences. State-of-art inference

serving systems, TensorFlow Serving [20] and NVIDIA Triton [19],

commonly employ afixed-interval pull-based approach (e.g., polling)

to monitor changes within the repository. However, in this case,

consumers may experience delays between the moment new check-

points were written to the repository and when the polling was

issued. These delays are further exacerbated by the I/O overheads

involved in writes/reads to/from the repository. For example, HPC

systems usually use Parallel File System (PFS) as the repository,

which is not optimized for the abundance of uncoordinated, small

I/O accesses involved in writing and reading the tensors that make

up the model checkpoints (usually represented as files). Although

there are alternative model repositories that are optimized for fine-

grain access (e.g. DStore [12]), they still represent an intermediate

staging area that has higher overheads than direct communication

between the producer and the consumer. On the producer side, the

most common strategy used to push a new checkpoint to the staging

area is simply doing so at regular intervals, which complements the

polling performed on the consumer side. However, such a strategy

is sub-optimal due to two reasons: (1) the push interval is deter-

mined empirically; (2) the training may not converge at the same

rate during the runtime (e.g., the training often converges faster in

the beginning and slower later), prompting the need to adjust the

checkpoint strategy accordingly (e.g., checkpoint more frequently

in the beginning and less frequently later).

Key insights and contributions: To address these limitations,

we propose Viper, an I/O framework that determines a viable check-

point schedule and accelerates the delivery of the scheduled model

checkpoints from producer to consumer. We summarize our contri-

butions as follows:

(1) We formulate the problem ofmaximizing the inference quality for

a givennumberof inferences continuously issued at afixed rate on

the consumer, while the producer keeps training the Deep Neural

Network (DNN) model, by casting it as an optimization problem

whose goal is to determine a viable checkpoint schedule (§ 3).

(2) We design and implement several algorithms to determine a vi-

able checkpoint schedule. These algorithms are based on a perfor-

mance predictor that predicts the inference quality as a function

of the training progress, as well as the overhead of updating the

model on the consumerby capturing a checkpoint on theproducer

and transferring it to the consumer (§ 4.3).

(3) To accelerate the delivery of the checkpoints, we design and im-

plement an asynchronous memory-first model transfer engine

that pushes new model checkpoints from the producer to the

consumer in the background (using direct GPU-to-GPUmemory

links when available), then atomically switches over to the new

model in a seamless fashion (§ 4.4).

(4) We integrate the checkpoint schedule algorithms and the model

transfer engine into a flexible, modular I/O framework that can

be adapted to the needs of HPCworkflows (§ 4.2).

(5) We perform extensive experiments on state-of-art HPC hard-

ware using both micro-benchmarks and end-to-end producer-

consumer workflows. The experiments demonstrate up to 9x

lower model update latency thanks to our direct asynchronous

capture and transfer of checkpoints, aswell as significantly higher

overall inference quality (§ 5).

2 BACKGROUNDANDRELATEDWORK
Online Training and Continual Learning: Many DL work-

flows typically operate in a dynamic environment where new input

data constantly fluxes and the data patterns shift unpredictably. For

instance, climate data changes over time in weather forecasting; pty-

chography imaging allows for continuous scanning across the sam-

ple during data acquisition to speed up data collection. Unlike offline

training, these workflows require the DNNmodel to be constantly

updated with new data, while enabling it to serve inferences at the

same time. To facilitate model updates, a simple approach is training

themodel incrementally bydirectly feeding it thenewdata.However,

without revisiting the trainingdata, themodel isprone to catastrophic
forgetting [14], i.e., bias in favor of the recent training samples. More

advanced continual learning approaches have beenproposed [9] that

retain representative past training samples and/or learning patterns

and rehearse them (a process called experience replay) to mitigate

catastrophic forgetting. Regardless, the updated DNNmodel must

be regularly sent to inference systems to ensure that the inferences

can utilize the latest parameter refinements, which is an important

use-case for DNNmodel checkpointing [8].

DNN Model Checkpointing: A checkpoint is a snapshot of

the DNN model state, typically including model parameters (i.e.,

weights and bias) and potentially containing the optimizer state, and
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other intermediate states for resuming training. Checkpointing may

incur significant I/O overhead as themodel size increases. Numerous

optimization methods have been explored to mitigate this burden.

DeepFreeze [17] embeds GPU-host tensor copies in the execution

graph of the backward pass, in order to overlap I/O with the compu-

tational kernels. DeepClone [18] solves a related problem in which

the DNNmodel needs to be replicated during a live training with-

out saving a checkpoint to persistent storage. DataStates-LLM [13]

leverages immutability of tensors during forward/backward pass to

achieve low-overhead copies of tensors from GPU to host memory

(from where asynchronous I/O can be applied). Check-N-Run [8]

introduces incremental checkpointing, capturing the differences

since the last checkpoint. DStore [12] and EvoStore [25] optimize

for partial capture and retrieval of DNNmodel tensors, as needed

by incremental storage scenarios where the checkpoints change

only partially (e.g. transfer learning). CheckFreq [16] introduces a

pipelined two-phase mechanism for asynchronous checkpointing

and uses dynamic rate tuning to optimize the checkpoint frequency

for resilience (facilitating restart in case of failures). However, we
optimize the checkpoint frequency with a distinct goal: to find a near-
optimal checkpoint schedule to enhance overall inference quality.

Inference Serving Systems: The model must be deployed to

serve inferences after it is trained. Historically, inference serving

was less emphasized than training optimizations, but the rise in

applications requiring real-time and robust inference has shifted

the focus [10]. Many inference serving systems have been designed

to cater to the needs of these applications [5, 19, 20]. TensorFlow-

Serving is the first production tailored for deploying and servingTen-

sorFlow’s SavedModel format models. NVIDIA Triton standardizes

inference serving by supporting various frameworks and provides

low inference latency and high inference throughput. Clipper ex-

tendsTensorFlow-Serving tooffer low-latencypredictionsacrossML

frameworks. Additional platforms include TorchServe [21], ONNX

Runtime [15], and others.However,most of themonly load themodel

once at startup. Although TensorFlow-Serving and NVIDIA Triton

use versioning to track model changes and allow dynamic load-

ing/unloading of the models, they rely on a polling approach to

detect changes and pay less attention to themodel update frequency.

This may underestimate the potential impact of frequent model

updates on the inference quality.

2.1 Training Coupled with Inference Serving:
Aspreviouslymentioned, online training requires theupdatedmodel

to be regularly delivered to the inference systems so that an up-to-

date model is employed for handling inferences. Model repository

often acts as a conduit for sharing models between producer and

consumer. Some web-enabled model repositories (e.g., TensorFlow

Hub, PyTorchHub, andCaffe’sModel Zoo) are created tomanage the

pre-trained models. They emphasize improving functionality and

user-friendliness. In HPC community, PFSs commonly serves as the

repository for disseminating the trained models between producer

and consumer. Both Wei et al [28] and Sima et al [24] introduced

a mechanism for updating models online with low latency. How-

ever, it focuses on the models employed in recommender systems,

which possess distinct requirements and constraints compared to
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Consumer
Node
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Figure 1: An example scenario of training and inference run-
ning in parallel on producer and consumer nodes
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Figure 2: Traditional producer-consumer communication ap-
proach vs. the Viper-enhanced communication approach
conventional DNNmodels.We focus on the DNNmodels used in sci-
entific DL workflows and strive to accelerate model delivery through
an alternative communication method.

3 PROBLEM FORMULATION
Consider a producer and a consumer running on two separate com-

pute nodes (belonging to the same or different data centers and/or

edge). Theproducer is responsible for training theDNNmodel,while

the consumer employs the DNNmodel to conduct inferences, as de-

picted in Figure 1. Since it is impractical for the consumer to wait

until the producer finishes the entire training process in a time-

constrained scenario, the consumer must start serving inferences

after waiting for a few initial epochs (warmup). Several real-life

HPC scientific workflows exhibit this producer-consumer pattern,

notably PtychoNN [1] and BraggNN [11]. A representative example

is ptychographic image reconstruction introduced in § 1.

To serve inferences with the latest model, a DNNmodel check-

point is required to be periodically taken on the producer and deliv-

ered to the consumerduring training. Let’s assume that the consumer

starts serving inferences after K warmup epochs and needs to exe-

cute a total ofM inferenceswithin a fixed period. TheseM inferences

are issued at a fixed rate (i.e., continually). Amodel update operation

includesmodel checkpointing andmodel data transfer.Wedefine the

model update interval as the number of training iterations between

two checkpoints. The model update interval can be either fixed or

non-fixed. However, themodel update frequency has a direct impact

on both training runtime and overall inference quality. On the one

hand, the model update should be frequent because it enables the in-

ferences to run on amodel that is closer to training convergence, i.e.,

it’s ofhigherquality.On theotherhand, traininghas tobe interrupted

due to checkpointing,which increases the training time.Viper aims to
find anear-optimalmodel update schedule (e.g., howmany checkpoints
and at which training iteration to perform the model update between
the producer and the consumer) to maximize the overall inference
quality over M inferences (i.e., minimize the cumulative inference loss).
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Traditionally, a model update is performed by using a model

repository as a staging area (e.g., PFS), as depicted in Figure 2a. This

approach, however, has two limitations. First, model updates may

experience delays due to the I/O bottleneck of PFS. It is important to

note that model updates, in practice, can occur more frequently than

an epoch boundary, possibly at the granularity of iterations [16].

The frequent nature of model updates leads to an abundance of un-

coordinated, small I/O accesses to the PFS. Unfortunately, the PFS

has limited I/O bandwidth and is not designed to efficiently handle

small random I/O access patterns, especially under concurrent ac-

cess [4]. This becomes a potential I/O bottleneck for model updates.

Second, consumers lack prompt awareness of changes to DNNmod-

els stored within the model repository. Existing inference serving

systems commonly employ a fixed-interval pull-based approach

(e.g., polling) tomonitor changes. One common thought is that using

a short polling interval can discover the changes promptly. Never-

theless, high-frequency polling significantly burdens the storage

system, potentially slowing down other I/O operations [23]. When

performing checkpointing, the model checkpoint can be cached on

the producer’s fast memory tiers (e.g., GPUmemory and Host mem-

ory). Suppose the consumer can get the checkpoint directly from the

producer’s fast memory and bypass the slower PFS, there will be a

substantial reduction in the end-to-endmodel update latency thanks

to the high I/O bandwidth of memory and the efficiency of high-

performance networks (e.g., InfiniBand). It motivates us to create an
efficient method for model delivery (using direct memory-to-memory
communication, as shown in Figure 2b).

4 VIPER: DESIGNAND IMPLEMENTATION
4.1 Design Objectives
We need to balance the trade-off between training runtime and

overall inference quality by determining a near-optimal checkpoint

schedule (i.e., a list of training iterations describing at which we

perform a checkpoint), which itself depends on the availability of

efficient techniques to capture checkpoints on the producer, transfer

them to the consumer, and seamlessly update the consumer’s model

for inferences. To address this trade-off, Viper is designed based on

the following objectives:

(1) Balancing the trade-off between training runtime and in-
ference quality: Frequent model updates enhance the inference

quality because of an early update, but may hinder the training

due to constant checkpoint interruptions. Conversely, infrequent

updatesmay result in less precise inference responses. Thus,Viper

should balance the trade-off between training slowdown and in-

ference quality improvement. Viper intends to find anear-optimal

checkpoint schedule to achieve this objective. It provides a plug-

gable infrastructure, allowing for implementing and integrating

different algorithms to determine the schedule if necessary (e.g., a

fixed-interval or greedy algorithm). Viper utilizes the assumption

that training quality can be used as a proxy to estimate inference

quality so that the checkpoint schedule can be generated before

actual inferences are performed (see assumption 1 and 2 in §4.3).

(2) Acceleratingmodel data transfer:When the consumer has a

time constraint for running inferences, the checkpoint delivery

speed becomes important. The PFS is slow, and this, coupled with

the consumer being unaware of new model updates promptly,

exacerbates the delays in accessing the up-to-date model on the
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Figure 3: TheHigh-level Architecture of Viper

Operation Args Return Description

save_weights() model_name, 
model_weights N/A Interface for training application to save the 

current model state to a storage

load_weights() model_name model_weights Interface for inference serving system to load 
an updated model from a storage

Figure 4: Lists of Viper’s APIs
consumer side. Viper should accelerate the delivery of check-

points between the producer and the consumer. To achieve this,

Viper introduces an asynchronous memory-first model transfer

engine to deliver the checkpoint efficiently, utilizing the faster

memory tier, e.g., GPUmemory or Host memory (depending on

availability), to reduce the data transfer latency. Viper also lever-

ages a publish-subscribe notification mechanism to promptly

notify the consumer when a newmodel is available.

4.2 High-Level Architecture Overview
Viper’s high-level architecture is illustrated in Figure 3. It serves

as an I/O library and provides a set of APIs (e.g., save_weights()
and load_weights() in Figure 4) for producers and consumers to

interact with it. Viper includes fourmajor components: aCheckpoint
Callback, an Inference Performance Predictor, aModel Weights Han-
dler, and a Notification Module. The Checkpoint Callback is a custom
callback used tomonitor the training quality of each iteration during

training. It is responsible for tracking the DNN model’s training

metrics (e.g., training loss/accuracy of each iteration), capturing

the DNN model’s current state, and triggering model updates at

specified checkpoints. Before starting training in the producer, a

Checkpoint Callback object is created and added to the callback list of
model.fit(). The Inference Performance Predictor is responsible for
finding a near-optimal checkpoint schedule to balance the trade-off

between training slowdown and inference quality improvement. It

can estimate the cumulative inference quality over a set of inferences

using the predicted training quality and generate a near-optimal

checkpoint schedule using the specified algorithm. The predicted

training quality is obtained through a learning curve function fitted

using the training quality observed during thewarm-up stage.Model
Weights Handler is a memory-first engine to accelerate the delivery

of checkpoints between producer and consumer. It is responsible

for processing the save/load requests from Checkpoint Callback and
the consumer respectively, and determining the most suitable data

transfer strategy for delivering the model. TheNotification Module
is responsible for actively notifying consumers about DNNmodel

updates, avoiding frequent polling of the model repository to detect
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Figure 5: Fitting the learning curve for TC1 with the warm-
up training loss using four functions (the end of warm-up is
marked with a vertical dotted line)
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changes and reducing the model update latency. Viper achieves ob-

jective 1 by the Inference Performance Predictor, and objective 2 by
combiningModel Weights Handler with Notification Module.

Figure 3 also depicts the flow of model updates between a pro-

ducer and a consumer. As shown in the figure, the producer and the

consumer operate concurrently. Before its execution, the producer

creates a callback object by setting a configurable initial model up-

date interval and then appends it to the callback list of model.fit().
When a model update is triggered by Checkpoint Callback,Model
Weights Handler will select a suitable location for saving the model

checkpoint and store the metadata (e.g., model name, version, loca-

tion, andfile path) to theMetadataDB (a shared in-memory database,

e.g., Redis). The checkpoint is asynchronously saved to the chosen lo-

cation (e.g., GPUmemory, Host memory, or PFS). Following this, the

Model Weights Handler puts a model update message to the Notifica-
tionModule, allowing theproducer toproceed to train the subsequent
iterations. Upon receiving the update message, theNotification Mod-
ule immediately notifies the consumer. The consumer, in response,

sends a load request to retrieve the new checkpoint. To do this,Model
Weights Handler fetches the model’s location from the Metadata

DB, reads the checkpoint from the corresponding location, and then

returns the newmodel to the consumer. Once getting the newmodel,

the consumer will seamlessly replace the previous model with this

new one and serve incoming inference queries with the latest model.

On the consumer side,Viper overlaps the I/O involved in receiving

an updated model and the inference serving using a double buffering
technique: the updatedmodel is written to an alternative copy, while

the primary copy is used to serve inferences. When the I/O to the

alternative copy is finished, then the primary copy and alternative

copy are swapped atomically, which has a negligible overhead that

causes imperceptible downtime, thus avoiding any negative impact

on the inference serving rate.

4.3 Optimized Checkpointing Schedule
Viper builds an Inference Performance Predictor (IPP) to find a

near-optimal checkpoint schedule to balance the trade-off between

training slowdown and inference quality improvement. The IPP can

estimate the cumulative inference quality over a specified period

based on given input parameters (e.g., start iteration, stop iteration,

number of inferences, training quality in the warm-up stage, and

other constant parameters). The IPP depends on a Training Loss

Predictor (TLP) and a Cumulative Inference Loss Predictor (CILP)

to predict the cumulative inference quality. Without completing the

entire training, IPP can identify and generate a checkpoint schedule

that maximizes cumulative inference quality while not adding more

overhead on training based on the specified algorithm. This schedule

is the near-optimal checkpoint schedule.

The design of IPP relies on the following assumptions:

(1) The training quality (e.g., loss/accuracy) of the DNNmodel can

be predicted as a function of the number of training iterations.

(2) The training quality (e.g., loss/accuracy) of a DNNmodel can be

used as a proxy to estimate the inference quality.

The first one comes from the study of Domhan et al. [7], which

indicates that the learning curve can describe the performance of

an iterative machine learning algorithm as a function of the number

of training iterations or its training time. A set of parametric funda-

mental functions used for modeling learning curves are offered in

studies [26]. The second one is based on observations that the train-

ing quality curve and inference quality curve usually exhibit similar

trends for traditional DNNmodels. Thus, it is justifiable to treat the

training quality of a checkpoint as its inference quality for simplicity.

First, Viper introduces a TLP to estimate the training quality at a

specific iteration 𝑥 . Although several factors like model architecture,

hyperparameters, and the choice of optimizer may influence the

training quality (e.g., training loss/accuracy) of a DNNmodel, Viper

assumes that the training application often uses DNNmodels that

are already optimized in terms of architecture, hyperparameters, and

optimizer. Moreover, the training loss curves observed in existing

DNNmodels usually exhibit a stable and similar trend. As such, it

is reasonable to model the training loss curve with a function and

predict how the training converges.

Vipermodels the training loss learningcurveusing functionsExp2

(𝑎𝑒−𝑏𝑥 ), Exp3 (𝑎𝑒−𝑏𝑥 +𝑐), Lin2 (𝑎𝑥+𝑏), and Expd3 (𝑐−(𝑐−𝑎)𝑒−𝑏𝑥 ), a
subset of functions documented in the literature [26]. Viper chooses

themas they showadecreasing trend, aligningwith the performance

trend observed in training loss. Viper utilizes the warm-up stage

training loss to fit those learning curve functions and selects the

most suitable one as its “TLP” to predict future training loss. For in-

stance, when modeling the training loss curve of the CANDLE-TC1,

Exp3 is the best curve function since it has minimal Mean Squared

Error (MSE). TLP is defined as: 𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑑 (𝑥) = 𝑎 ∗𝑒𝑥𝑝 (−𝑏 ∗𝑥) +𝑐 ,
where 𝑥 represents the training iteration ID, while parameters 𝑎, 𝑏,

and 𝑐 are used to control the learning curve shape. Certainly, users

can define a custom predictor tailored to its specific training metric

and replace the TLP with a different predictor.

There is a one-to-one mapping between the training iteration

number and the training time, it is easy to map a given time 𝑡𝑘 to a

training iteration 𝑥 ′ if we know the training time of each iteration

𝑡𝑡𝑟𝑎𝑖𝑛 , the checkpoint interval 𝑐𝑘𝑝𝑡𝑖 , and the stall time 𝑡𝑝 caused

by checkpointing on the producer side. Obviously, 𝑡𝑡𝑟𝑎𝑖𝑛 remains

consistent throughout the training. This assertion is empirically

validated by executing a training application for a single epoch and

measuring 𝑡𝑡𝑟𝑎𝑖𝑛 within that epoch (See Figure 6). The stall time 𝑡𝑝

can be derived as 𝑡𝑝 =
𝑠𝑚𝑜𝑑𝑒𝑙

𝑏𝑤𝑤𝑟𝑖𝑡𝑒
, in which 𝑠𝑚𝑜𝑑𝑒𝑙 refers to the DNN

model size and𝑏𝑤𝑤𝑟𝑖𝑡𝑒 is the I/O bandwidth ofwriting aDNNmodel
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checkpoint to the corresponding storage (e.g., GPUmemory, Host

memory, or PFS). For any given DNN model architecture, 𝑠𝑚𝑜𝑑𝑒𝑙

remains consistent throughout the training process. It can be deter-

mined using two common methods: 1) serializing and saving the

model as a file and getting the model size by checking the file size;

2) counting the number of parameters in the model and getting the

model size by calculating the space needed for storing these param-

eters. In Viper, we already have the initial checkpoint file after the

warmup stage, so we get the model size by checking the file size.

Theoretically, the I/O bandwidth 𝑏𝑤𝑤𝑟𝑖𝑡𝑒 remains constant, but in

practice it tends to fluctuate. We obtain it by measuring the current

I/O bandwidth of the corresponding storage in the system. Then we

can convert the training time 𝑡𝑘 into a training iteration ID 𝑥 ′ based
on the input checkpoint interval 𝑐𝑘𝑝𝑡𝑖 through formula:

𝑥 ′ =𝑔𝑒𝑡_𝑖𝑡𝑒𝑟𝑠 (𝑡𝑘 ,𝑐𝑘𝑝𝑡𝑖 ) =𝑐𝑘𝑝𝑡𝑖 ∗⌊
𝑡𝑘

𝑡 ′
𝑡𝑟𝑎𝑖𝑛

⌋+⌊ 𝑡𝑟𝑒𝑚
𝑡𝑡𝑟𝑎𝑖𝑛

⌋ (1)

where

𝑡 ′𝑡𝑟𝑎𝑖𝑛 =𝑐𝑘𝑝𝑡𝑖 ∗𝑡𝑡𝑟𝑎𝑖𝑛+𝑡𝑝 and 𝑡𝑟𝑒𝑚 =𝑚𝑖𝑛 (𝑡𝑘 − ⌊
𝑡𝑘

𝑡 ′
𝑡𝑟𝑎𝑖𝑛

⌋∗𝑡 ′𝑡𝑟𝑎𝑖𝑛,𝑡 ′𝑡𝑟𝑎𝑖𝑛 )

Hence, the training quality observed at the time 𝑡𝑘 is identical to that

at training iteration 𝑥 ′, expressed as 𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑑 (𝑔𝑒𝑡_𝑖𝑡𝑒𝑟𝑠 (𝑡𝑘 ,𝑐𝑘𝑝𝑡𝑖 )).
Next, we estimate the cumulative inference quality over a fixed

duration 𝑡𝑚𝑎𝑥 . Here, the cumulative inference quality is determined

by the sumof the inference losses for all requests executedwithin the

interval [0, 𝑡𝑚𝑎𝑥 ], which is called Cumulative Inference Loss (CIL).

Viper introduces a CILP to estimate the CIL, where a lower value

means a better prediction. The CILP uses the training loss of a check-

point as the inference loss of that checkpoint based onAssumption 2.
The consumer can handle inference requests while simultaneously

loading the newmodel, since Viper segregates the inference serv-

ing thread from the model updating thread in its implementation.

Assume that the timing of each inference request, denoted as 𝑡𝑖𝑛𝑓 𝑒𝑟 ,

remains constant, which can be validated by performing a set of

inferences in the consumer (Figure 6). The overhead for loading a

newmodel on the consumer side, denoted as 𝑡𝑐 , is calculated through

𝑡𝑐 =
𝑠𝑚𝑜𝑑𝑒𝑙

𝑏𝑤𝑟𝑒𝑎𝑑
, where 𝑏𝑤𝑟𝑒𝑎𝑑 represents the I/O bandwidth of reading

a DNNmodel from the corresponding storage. It is measured using

the same approach for getting𝑏𝑤𝑤𝑟𝑖𝑡𝑒 . At this point, CILP calculates

CIL over a fixed duration 𝑡𝑚𝑎𝑥 using the following formula:

𝑎𝑐𝑐𝐿𝑜𝑠𝑠 (𝑐𝑘𝑝𝑡𝑖 ,𝑡𝑚𝑎𝑥 ) =


𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑑 (0) ∗ 𝑡𝑚𝑎𝑥

𝑡𝑖𝑛𝑓 𝑒𝑟
𝑐𝑛𝑚 =0

𝑘=𝑐𝑛𝑚∑
𝑘=0

𝑙𝑜𝑠𝑠_𝑝𝑟𝑒𝑑 (𝑘∗𝑐𝑘𝑝𝑡𝑖 )∗
𝑖𝑛𝑓 𝑒𝑟𝑠 (𝑘,𝑐𝑛𝑚,𝑐𝑘𝑝𝑡𝑖 ) 𝑐𝑛𝑚 >=1

(2)

where

𝑐𝑛𝑚 = ⌊ 𝑡𝑚𝑎𝑥−𝑡𝑐
𝑡 ′
𝑡𝑟𝑎𝑖𝑛

⌋

𝑖𝑛𝑓 𝑒𝑟𝑠 (𝑐𝑖𝑑 ,𝑐𝑛𝑚,𝑐𝑘𝑝𝑡𝑖 ) =



𝑡 ′
𝑡𝑟𝑎𝑖𝑛

+𝑡𝑐
𝑡𝑖𝑛𝑓 𝑒𝑟

𝑐𝑖𝑑 =0

𝑡 ′
𝑡𝑟𝑎𝑖𝑛
𝑡𝑖𝑛𝑓 𝑒𝑟

0<𝑐𝑖𝑑 <𝑐𝑛𝑚

𝑡𝑚𝑎𝑥 −(𝑐𝑖𝑑 ∗𝑡 ′𝑡𝑟𝑎𝑖𝑛+𝑡𝑐 )
𝑡𝑖𝑛𝑓 𝑒𝑟

𝑐𝑖𝑑 =𝑐𝑛𝑚

The goal of the IPP is to find a near-optimal checkpoint schedule

to maximize the cumulative inference quality over a fixed duration

while adding less overhead on training runtime. Here, maximizing

the cumulative inference quality over a fixed duration means mini-

mizing the CIL over a fixed duration. Therefore, the formula of CILP

Algorithm1Calculate the Total Inference Losseswithin an Interval
1: function CIL(𝑖𝑛𝑡𝑒𝑟 , 𝑙𝑜𝑠𝑠 , 𝑐𝑘𝑝𝑡_𝑣𝑒𝑟 , 𝑟𝑒𝑚_𝑖𝑛𝑓 𝑒𝑟𝑠)

2: if 𝑐𝑘𝑝𝑡_𝑣𝑒𝑟 == 1 then
3: 𝑖𝑛𝑓 𝑒𝑟𝑠←⌊ 𝑖𝑛𝑡𝑒𝑟∗𝑡𝑡𝑟𝑎𝑖𝑛+𝑡𝑝+𝑡𝑐

𝑡𝑖𝑛𝑓 𝑒𝑟
⌋;

4: else
5: 𝑖𝑛𝑓 𝑒𝑟𝑠←⌊ 𝑖𝑛𝑡𝑒𝑟∗𝑡𝑡𝑟𝑎𝑖𝑛+𝑡𝑝

𝑡𝑖𝑛𝑓 𝑒𝑟
⌋;

6: end if
7: 𝑖𝑛𝑓 𝑒𝑟𝑠←𝑚𝑖𝑛 (𝑖𝑛𝑓 𝑒𝑟𝑠,𝑟𝑒𝑚_𝑖𝑛𝑓 𝑒𝑟𝑠 ) ;
8: 𝑒_𝑖𝑡𝑒𝑟 −𝑠_𝑖𝑡𝑒𝑟←𝑙𝑜𝑠𝑠∗𝑖𝑛𝑓 𝑒𝑟𝑠 ;
9: return𝑎𝑐𝑐_𝑖𝑛𝑓 𝑒𝑟_𝑙𝑜𝑠𝑠 , 𝑖𝑛𝑓 𝑒𝑟𝑠 ;

10: end function

used for determining a near-optimal checkpoint schedule is:

𝑐𝑘𝑝𝑡𝑜𝑝𝑡 = argmin

𝑐𝑘𝑝𝑡𝑖=1,2,...,𝑁

𝑎𝑐𝑐𝐿𝑜𝑠𝑠 (𝑐𝑘𝑝𝑡𝑖 ,𝑡𝑚𝑎𝑥 ) (3)

Based on the assumptions and the mathematical formulation of

the IPP, we propose and implement two algorithms to determine

the near-optimal checkpoint schedule: (1) a fixed-interval schedule,

which assumes a regular checkpoint interval and whose goal is to

find the near-optimal checkpoint frequency; (2) a greedy irregular-

interval schedule, which assumes no constraint regarding when a

checkpoint can be taken. The reason for proposing both algorithms

are due to the following trade-off: a fixed-interval schedule makes it

easier to optimize the asynchronous capture and transfer strategies

for checkpoints, however at the expense of less flexibility in reducing

the gap between the trained model on the producer and the model

used for inferences on the consumer. Thanks to these two algorithms,

the user has a choice of how to optimize this trade-off.

OptimalScheduleAlgorithms:Algorithm1depicts themethod

used to calculate CIL within a given checkpoint interval, which is

used by both fixed-interval and greedy algorithms. It utilizes two

different equations (line 3 and line 5) for the first model updates and

the remaining model updates since 𝑡𝑐 overlaps with the next train-

ing iteration (see Figure 1). The aforementioned mathematical IPP

describes how to predict a near-optimal regular interval checkpoint

schedule to achieve objective 1. The fixed-interval algorithm is illus-

trated in Algorithm 2. It traverses all possible checkpoint intervals

and chooses the onewith theminimal CIL as the near-optimal check-

point interval. However, the fixed-interval method overlooks the

potential inference quality improvement between two consecutive

checkpoints, possibly resulting in multiple updates with negligi-

ble improvement. To mitigate this problem, the greedy algorithm

for predicting an irregular update interval checkpoint schedule is

employed (see Algorithm 3). This algorithm performs a checkpoint

exclusively when the improvement between the training loss of the

current iteration and that of the preceding checkpoint surpasses a

specified threshold (line 8). This threshold is determined during a

warm-up phase by calculating the mean and standard deviation of

the differences between consecutive training losses; the threshold

is then set as the sum of this mean and standard deviation.

4.4 AcceleratingModel Data Transfer
Viper creates an asynchronous memory-first model transfer engine,

Model Weights Handler, to accelerate model movement between

producer and consumer. During training, the producer can cache

the DNNmodel in alternative locations, such as GPUmemory, Host

memory, local storage devices, or PFS, thanks to the multi-tiered

storage architecture inherent in modern supercomputing compute
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Algorithm 2 Fixed Interval Schedule Algorithm
Input: 𝑠_𝑖𝑡𝑒𝑟 , 𝑒_𝑖𝑡𝑒𝑟 , 𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓 𝑒𝑟𝑠
Output:A near-optimal checkpoint schedule𝑏𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟

1: 𝑚𝑖𝑛_𝑙𝑜𝑠𝑠, 𝑏𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟,𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟← 𝐼𝑛𝑓 𝑖𝑛𝑖𝑡𝑒, 𝑁𝑜𝑛𝑒,𝑒_𝑖𝑡𝑒𝑟 −𝑠_𝑖𝑡𝑒𝑟
2: for 𝑖←1,𝑚𝑎𝑥_𝑖𝑛𝑡𝑒𝑟 +1 do
3: 𝑡_𝑙, 𝑟𝑒𝑚←0, 𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓 𝑒𝑟𝑠 ;

4: 𝑝_𝑙←p_training_loss(𝑠_𝑖𝑡𝑒𝑟 ) ;
5: 𝑐_𝑖𝑡𝑒𝑟, 𝑐𝑘𝑝𝑡_𝑣𝑒𝑟←𝑠_𝑖𝑡𝑒𝑟 +𝑖, 1;
6: while 𝑐_𝑖𝑡𝑒𝑟 <=𝑒_𝑖𝑡𝑒𝑟 do
7: 𝑖_𝑙, 𝑖𝑛𝑓 𝑒𝑟𝑠←CIL(𝑖,𝑝𝑙 ,𝑐𝑘𝑝𝑡_𝑣𝑒𝑟,𝑟𝑒𝑚) ;
8: 𝑡_𝑙, 𝑟𝑒𝑚←𝑡_𝑙+𝑖_𝑙, 𝑟𝑒𝑚−𝑖𝑛𝑓 𝑒𝑟𝑠 ;
9: 𝑝_𝑙←p_training_loss(𝑐_𝑖𝑡𝑒𝑟 ) ;
10: 𝑐_𝑖𝑡𝑒𝑟, 𝑐𝑘𝑝𝑡_𝑣𝑒𝑟←𝑐_𝑖𝑡𝑒𝑟 +𝑖, 𝑐𝑘𝑝𝑡_𝑣𝑒𝑟 +1;
11: endwhile
12: 𝑡_𝑙←𝑡_𝑙+𝑝_𝑙 ∗𝑟𝑒𝑚;

13: if 𝑡_𝑙 <𝑚𝑖𝑛_𝑙𝑜𝑠𝑠 then
14: 𝑚𝑖𝑛_𝑙𝑜𝑠𝑠, 𝑏𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟←𝑡_𝑙, 𝑖 ;

15: end if
16: end for
17: return𝑏𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟

Algorithm 3 Irregular Interval Schedule Algorithm: Greedy

Input: 𝑠_𝑖𝑡𝑒𝑟 , 𝑒_𝑖𝑡𝑒𝑟 , 𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓 𝑒𝑟𝑠 , 𝑡ℎ𝑟𝑒𝑠ℎ
Output:A near-optimal checkpoint schedule𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑

1: 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑, 𝑝_𝑖𝑡𝑒𝑟←[], 𝑠_𝑖𝑡𝑒𝑟
2: 𝑝_𝑙←p_train_loss(𝑠_𝑖𝑡𝑒𝑟 ) ;
3: 𝑖, 𝑐𝑘𝑝𝑡_𝑣, 𝑟𝑒𝑚←𝑠_𝑖𝑡𝑒𝑟 +1, 1, 𝑡𝑜𝑡𝑎𝑙_𝑖𝑛𝑓 𝑒𝑟𝑠 ;
4: while 𝑖<=𝑒_𝑖𝑡𝑒𝑟 do
5: 𝑐_𝑙←p_train_loss(𝑖 )
6: if (𝑐_𝑙 <𝑝_𝑙 )∧ (𝑎𝑏𝑠 (𝑐_𝑙 −𝑝_𝑙 ) >𝑡ℎ𝑟𝑒𝑠ℎ) then
7: 𝑖_𝑙, 𝑖𝑛𝑓 𝑒𝑟𝑠←CIL(𝑖−𝑝_𝑖𝑡𝑒𝑟,𝑝_𝑙,𝑐𝑘𝑝𝑡_𝑣,𝑟𝑒𝑚) ;
8: 𝑝_𝑙, 𝑝_𝑖𝑡𝑒𝑟,←𝑐_𝑙, 𝑖 ;

9: 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖 ) ;
10: 𝑖, 𝑐𝑘𝑝𝑡_𝑣, 𝑟𝑒𝑚←𝑖+1, 𝑐𝑘𝑝𝑡_𝑣+1, 𝑟𝑒𝑚−𝑖𝑛𝑓 𝑒𝑟𝑠 ;
11: end if
12: endwhile
13: return𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑

nodes.Model Weights Handler utilizes the cached DNNmodels on

the producer’s end and creates a direct communication channel to

deliver the model data between producer and consumer.

There are two direct communication channels: direct GPU-to-

GPUmemory and direct Host-to-Host memory. Viper is designed

to be generic, ensuring compatibility across various GPU vendors.

It prefers GPU-to-GPU communication when it is available (e.g.,

NVIDIA’s GPUDirect Remote Direct Memory Access (RDMA) and

GPUDirect Peer-to-Peer, along with AMD’s ROCm RDMA) due

to the high I/O bandwidth. To this end, it relies on the Message

Passing Interface (MPI) library by taking advantage of standardized

high-level vendor-optimized communication primitives (MPI_Send
and MPI_Recv), which are supported by popular implementations:

OpenMPI, MVAPICH2, and CrayMPICH.When direct GPU-to-GPU

communication is not available, Viper falls back to host-to-host

RDMA transfer. In this case, a DNN model snapshot is first trans-

ferred from the GPU memory to the Host memory (which blocks

the training until completion). Then, the snapshot residing in the

producer’s Host memory is sent to the consumer’s Host memory

through the InfiniBand (IB) network. Once received, the consumer

will update its loaded model’s tensors by copying the data from

the Host memory to the responding GPUmemory (e.g., using the

CUDA’s cudaMemcpyAsync API). Although this method involves

extra overheads of using the host memory as a staging area (on both

the producer and the consumer), it is still significantly faster than

writing to and reading from a repository such as a PFS.
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Figure 7: Viper’s memory-first transfer engine
Figure 7 showcases how Model Weights Handler handles the

save/load requests and routes themodel usingdistinct transfer strate-

gies. When processing the save request from the producer,Model
Weights Handler first utilizes the Transfer Selector to select a proper
transfer strategy based on the existing workload on the storage and

then delivers the model data using the selected transfer strategy. In

Viper, GPU-to-GPUmemory andHost-to-Hostmemory communica-

tions only buffer and transfer the latestDNNmodel due to the limited

size of GPUmemory andHostmemory. For fault tolerance, all histor-

ical DNNmodels are flushed to the PFS through a background thread

to minimize the impact on training. Flushing the models to PFS may

increase memory utilization. However, the DNNmodels targeted by

this work are small and can fit in the GPUmemory. Therefore, an

extra copy in the Host memory for flushing is not a problem.

Viper utilizes a lightweight publish-subscribe notificationmodule

(based on Redis) to reduce model discovery latency by proactively

informing consumers of model updates. Unlike state-of-the-art ap-

proaches (e.g., NVIDIA’s Triton [19]), which periodically poll the

model repository to check for updates (the minimal latency is 1ms),

our approach achieves less than 1msnotification latency. Thus,when

an updated model is available, it can be immediately transferred to

the consumer without any delay caused by polling. This reduces the

transfer time, allowing inferences to utilize the updated model more

quickly, thereby enhancing the overall quality of the inferences.

5 EVALUATIONS
5.1 Experimental Setup

Testbed. Our experiments were conducted on ALCF’s Polaris

system, consisting of 560 compute nodes. Each node has an AMD

Zen 3 (Milan) CPU (64 threads), 4×A100 40GB GPUs interconnected

via NVLink, and 512 GB DDR4 RAM. The nodes are interconnected

using the Slingshot 10 network. Additionally, Lustre is used as the

external storage, with a aggregated I/O bandwidth of 650 GB/s.

Software. Viper is implemented using Python and C++. The

memory-first engine is implemented through C++ because Python’s

efficiency in multithreading is limited by Global Interpreter Lock

(GIL). The IPP is implemented using Python. It is integrated as a

plugin within Viper, allowing users to create alternative optimiza-

tion algorithms to find the near-optimal checkpoint schedule. Viper

exposes a set of Python APIs through nanobind-1.5.2 so that the

producer and consumer can interact with it. We utilize MPICH

and CUDA to build memory-to-memory communication channels,

Tensorflow-2.9 for performing training and inferences, and Redis-7.4

as a database to store the DNNmodel metadata.
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Figure 8: The end-to-endmodel update latency across different data transfer strategies

5.2 Applications andMetrics
Applications: CANDLE-NT3:Pilot1benchmarks fromtheCAN-

DLE [29] project aim to predict drug response based on molecular

features of tumor cells and drug descriptors. NT3 within Pilot1 is a

1D convolutional network for classifying RNA-seq gene expression

profiles into normal or tumor tissue. It follows a traditional con-

volutional model structure with multiple 1D convolutional layers

interleaved with pooling layers followed by final dense layers. It

uses SGD (stochastic gradient descent) optimizer. Its training dataset

contains 1120 samples, with an additional 280 samples for test.

CANDLE-TC1: TC1, another Pilot1 benchmark, is also a 1D con-

volutional network but classifies RNA-seq gene expression profiles

into 18 balanced tumor types. It adopts an architecture akin to NT3

and utilizes the same optimizer. Its training dataset includes 4320

samples, while the test dataset has 1080 samples.

PtychoNN: PtychoNN [1] is a neural network that simultane-

ously predicts real-space amplitude and phase from input diffraction

data alone. Its architecture includes three parts: an encoder that

learns a representation (encoding) in the feature space of the x-ray

diffraction data, and two decoders that learn to map from the encod-

ing to real-space amplitude and phase respectively. It selects Adam

as the optimizer. Its training dataset contains 16100 samples, while

the test dataset has 3600 samples.

Metrics: We measured the end-to-end model update latency

by summing the checkpointing time (producer side) and the deliv-

ery/loading time (consumer side). To assess IPP, we use CIL as the

metric, since a single scalarmetricmakes it easy to compare different

approaches. CIL is the total inference loss accumulated across a set

number of inferences. A lower CIL indicates a better result. For NT3

and TC1, the inference loss is measured through Cross-Entropy loss,

the difference between the ground truth and the prediction. Ptych-

hoNN uses theMeanAbsoluteError loss to measure its inference loss.

We executed all tests three times and reported the average value.

5.3 Results: Model Update Latency
We conducted two tests to assess our model transfer method: (1)

evaluating the end-to-end model update latency across different

strategies; and (2) evaluating the benefits of using a low-latency

model update method. In these tests, we deploy a producer (training

application) and a consumer (synthetic inference system) on sepa-

rate nodes to avoid node-local caching. They are running in parallel

after the warm-up period.

End-to-EndModel Update Latency: We first study the end-

to-end model update latency using three transfer strategies: PFS,

Host-to-Host memory, and GPU-to-GPU memory. To do this, we

compared six different approaches for data sharing between a pro-

ducer and a consumer: h5py(baseline), Viper-PFS, Viper-Sync(Host

Memory), Viper-ASync(Host Memory), Viper-Sync(GPUMemory),

and Viper-ASync(GPUMemory). Here h5py means using h5py API

to transfer the checkpoint through PFS while Viper-PFS refers to us-

ing Viper’s API; Viper-Sync and Viper-Async indicate synchronous

and asynchronousmodel transfers, respectively, through eitherGPU

or Host memory. The goal is to show that Viper can significantly

reduce the model update latency compared with the baseline. We

analyzed the model update latency of three DNN models: NT3.A

(600 MB), TC1 (4.7 GB), and PtychoNN (4.5 GB).

Figure 8a depicts the results of NT3.A, in which the baseline

latency is 1.5 seconds. The results reveal that both GPU-to-GPU

memory and Host-to-Host memory methods can achieve better

performance. Specifically, GPU-to-GPUmemory outperforms the

baseline by 12x (using Viper-Async), saving 1.4 seconds of latency.

Host-to-Host memory outperforms the baseline by 4x (using Viper-

Async), saving 1.1 seconds of latency. The improvement is attributed

to the high I/O bandwidth of the fast memory tiers and the high-

speed network. We also noticed that Viper-PFS saves 0.4 seconds of

latency,making it about 1.3x faster than the baseline. That is because

Viper only writes the model weights and closely related metadata

into the file, avoiding some unnecessary metadata added by h5py.

Moreover, we also observed that Viper-Async is a bit slower than

Viper-sync. It is because Viper-Async handles data transfer with a

separate thread to reduce the interruption time on training, which

requires an extra copy and increases latency compared with Viper-

Sync. Although Viper-Sync can get lower latency, it increases the

training duration due to the blocking of data delivery.

Figure 8b shows the result of TC1, a large-size model. The base-

line latency is 8.0 seconds, greater than the baseline for the smaller

model. The findings once more highlight that GPU-to-GPUmemory

communication offers 9x improvement over the baseline, but this

time it saves 7.1 seconds. Host-to-Host memory communication

achieves 3x improvement compared to the baseline, saving 5.6 sec-

onds of latency. Note that the greater model size makes the observed

latency reduction greater. Larger models see more benefit from the

GPU-to-GPU or Host-to-Host memory transfer methods.

Figure 8c describes the result of PtychoNN. Its baseline latency is

8.3 seconds, which is a bit slower than the baseline for TC1. That is

because PtychoNN’smodel architecture is different fromTC1,which

takes more time to load the model. Once more, we observed that

Viper significantly reduces the end-to-end model update latency

compared with the baseline. Specifically, GPU-to-GPUmemory re-

duces the latency by a factor of 15x compared to the baseline, and

819



Viper: A High-Performance I/O Framework for Transparently Updating, Storing, and Transferring Deep Neural NetworkModels ICPP ’24, August 12–15, 2024, Gotland, Sweden

0

10

20

30

40

50

60

70

30.0k

31.0k

32.0k

33.0k

34.0k

35.0k

36.0k

37.0k

38.0k

39.0k

GPU Memory Host Memory PFS

Ti
m

e 
(s

)

Cu
m

ul
at

iv
e 

In
fe

re
nc

e 
Lo

ss

Model Data Transfer Strategy

cumulative inference loss
training overhead

Figure 9: Impact of a low-latencymodel update on inference
and training performance (update interval: epoch boundary)
Host-to-Host memory is at least 4x less than the baseline. Viper-PFS

also reduces the latency by a factor of 1.2x.

All findings suggest that Viper enhances model data transfer, par-

ticularly with direct communication methods. While our results are

based on the average latency between one producer and one con-

sumer, these insights are likely applicable on a larger scale. This will

be a focus of our future work when exploring data transfer between

multi-producers and multi-consumers for large models.

Benefits of Low-latencyModel Update. This test illustrates
the cumulative inference quality improvement achieved using a

low-latency transfer strategy and quantifies the overhead added to

training using different strategies.We testwithTC1model and set its

update interval at the epoch boundary (216 iterations). We measure

the Cumulative Inference Loss (CIL) over 50,000 inferences and the

training overhead caused by model updates across three strategies.

In Figure 9, the blue bar demonstrates the CIL across various

strategies, and the orange line represents the training overhead

incurred by checkpointing under different transfer strategies. We

can see a notable trend: for the same number of model updates (16

checkpoints), both GPU-to-GPUmemory and Host-to-Host mem-

ory exhibit lower CIL and less training overhead than PFS. A lower

value means better performance. For instance, the overhead of GPU-

to-GPU memory is 1s, which is negligible compared to PFS (60s).

Although Host-to-Host memory introduces more overhead (22s)

compared to GPU-to-GPUmemory, it is still much better than PFS.

This is because the I/O access to GPUmemory and Host memory is

much faster than PFS. While 16 checkpoints provide 60 seconds of

overhead reduction between PFS and GPU, more checkpoints will

compound this so that an application performing 2000 checkpoints

should see about two hours of training overhead reduction. This

could be invaluable time in a time-constrained scenario. In addition,

the consumer handles inferences at a consistent rate, as evidenced by

the uniform inference request time shown in Figure 6 (§ 4.3). In this

context, utilizing a low-latency method to transmit the model can

obtain minimal CIL because it enables the consumer side to process

more inferences using the most recent models. Conversely, if there

is insufficient GPU or Host memory and the model is transferred

through PFS, there is amarked increase in CIL. This rise is attributed

to more inferences being served by older models compared with

direct communication channels. Thus, delivering a model with low

latency is required anduseful as it improves the cumulative inference

quality and minimizes the overhead on training time.

5.4 Results: Inference Performance Predictor
This experiment evaluates the Cumulative Inference Loss (CIL) over

a fixed number of inferences using the GPU-to-GPUmemory trans-

fer strategy based on three checkpoint schedules: epoch-boundary

Num of Checkpoints Training Overhead (s)
Baseline Fixed-inter Adapt-inter Baseline Fixed-inter Adapt-inter

NT3.B 7 49 40 0.107 0.372 0.353
TC1 16 128 63 1.29 3.437 2.579

PtychoNN 13 16 6 0.39 0.48 0.18

Table 1: Checkpoints and training overhead
(Baseline), fixed-interval, and adaptive-interval. We aim to show

that the checkpoint schedule identified by IPP can achieve lower CIL

compared to the baseline. The fixed and adaptive checkpoint sched-

ules represent the ones found using the fixed-interval and the greedy

algorithm respectively (§ 4.3). The fixed-interval algorithmdescribes

a naive method of finding the near-optimal schedule. We run with

three applications: NT3.B, TC1, and PtychoNN (real-life application).

Figure 10a displays the results of NT3.B (1.7GB) across 25,000 in-

ferences across different checkpoint schedules. Compared with the

baseline, the adaptive-interval schedule reduces the CIL from 3.8k

to 3.0k, while the fixed-interval schedule reduces it from 3.8k to 3.6k.

This aligns with our expectations. As indicated in Table 1, although

our predicted schedules yield more model updates than the baseline,

they achieve lower CIL without adding too much training overhead,

about 0.25s when using the adaptive method in contrast to the base-

line. The adaptive method’s efficacy stems from its capability to

adjust the update interval according to the training converging rate.

This canproducemore frequent updates initially because of the rapid

decline in training loss, and less frequent updates as it approaches the

convergence point due to the gradual stabilization of training loss.

Figure 10b shows the outcomes for TC1 (4.7GB) over 50,000 re-

quests. With a fixed number of inference requests, both the fixed-

interval and the adaptive-interval schedules lower the CIL to 30.6k

and 30.4k, respectively, from the 32.8k (baseline). Although the dis-

parity in CIL between the fixed-interval and the adaptive-interval

schedule is small (0.2k), the number of checkpoints using the adap-

tive method is roughly half compared to those produced using the

fixed-interval approach (Table 1). This reconfirms that utilizing an

adaptive interval schedule can help us get lower CIL.

Similarly, Figure 10c depicts the results of PtychoNN (4.5GB) over

40,000 inference requestswith the samecheckpoint schedules.Weob-

served that the fixed-interval and the adaptive-interval schedules re-

duce theCIL fromthebaselineof 66.2k to52.9kand45.1k respectively.

Once more, the adaptive-interval schedule allows us to get better

CILwith fewer checkpoints compared to the fixed-interval approach

(as shown in Table 1). This indicates Viper’s capability to identify

the near-optimal checkpoint schedule for actual applications.

6 CONCLUSIONAND FUTUREWORK
This work proposes Viper, an I/O framework that determines a vi-

able checkpoint schedule and accelerates the scheduled DNNmodel

checkpoints delivery from producer to consumer. To identify the

near-optimal schedule, Viper designs two algorithms based on an in-

telligent inference performance predictor that predicts theCIL based

on the predicted training loss and checkpoint delivery overhead.

Viper creates an asynchronous memory-first model transfer engine

alongside a push-based notificationmodule to accelerate checkpoint

delivery. Experimental results show that Viper can reduce themodel

update latency by ≈ 9x with GPU-to-GPU strategy and ≈ 3x with
Host-to-Host strategy. Furthermore, our predictor-driven schedule

also contributes to improved cumulative inference quality.
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Figure 10: Cumulative inference loss over a fixed number of inferences using different checkpoint schedulemethods

Currently, Viper primarily targets DNN models that can fit in

the memory of a single GPU. Given the increasing popularity of

model parallelism, especially in the context of LLMs and transform-

ers, we will extend our work with support for a multi-producer,

multi-consumer pattern in which we allow the DNN model to be

sharded in different ways during the training and inferences (e.g. by

mixing tensor, pipeline, and data parallelism).
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