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Abstract— Pre-training of LLMs and transformers is known to
take weeks if not months even with powerful HPC systems. However,
inferences are an equally important problem: once pre-trained, the
model needs to serve a large number of inferences submitted under
concurrency by multiple users. Thus, speeding up each inference
request is instrumental in achieving high throughput and latency at
scale. To avoid redundant recomputation in each decode iteration, a
Key-Value (KV) cache is used to store previously computed keys (K)
and values (V), speeding up token generation. GPU memory is
primarily consumed by model weights and the remainder is used by
the KV cache. Thus, the free GPU space available to the KV cache
is a scarce resource that needs to be managed in an efficient way in
order to minimize the overhead of redundant recomputations. There
are many optimizations applied in this context: batching of inference
requests to enable them to run in the same forward pass (and thus
increase the parallelism and inference throughput), different KV
cache eviction policies (simply drop KV entries and recompute them
later vs. swap to host memory), etc. Under these circumstances, the
decision of what batching strategy, what KV cache eviction policy
to apply and how the KV cache impacts the inference performance
is non-trivial. Unlike the case of pre-training, state-of-art studies
are scarce in this context. To fill this gap, in this paper we study
the impact of KV caching. Specifically, we instrument vLLM to
measure and analyze fine-grain metrics (token throughput, KV
cache memory access patterns, load balancing of the forward passes),
during different inference stages (prefill, decode) in several scenarios
that involve concurrent inference requests using several benchmarks.
Based on the measurements and associated observations, we identify
several opportunities to improve the design of inference frameworks.

Index Terms—LLM inference, KV cache profiling, access pattern
characterization.

I. INTRODUCTION

Large Language Models (LLMs) have revolutionized the
field of Natural Language Processing (NLP) by introducing
powerful AI systems capable of understanding and generating
human-like text with remarkable fluency and coherence. These
models, trained on vast amounts of data, can perform a wide
range of tasks: literature search [1], knowledge distillation [2],
and complex reasoning [3] enabling researchers to navigate
complex scientific problems more efficiently.

LLMs are only a starting point in unlocking the generative
abilities of broader transformers to accelerate science: analyzing
and plotting experimental data [4], formulating hypotheses [5],
designing experiments [6], and even predicting promising
research directions. To this end, modern transformers combine
multi-modal data, leverage domain-specific representations,
capture correlations through complex attention mechanisms [7]
(e.g., self-attention, cross-attention), and compose specialized
architectures (e.g., mixture of experts [8]) [9], [10]. They
form the core of foundational models (FMs). The potential for
innovations in this space has barely been tapped.

In a quest for more emergent behavior (advanced capabilities
not explicitly trained for but emerging spontaneously due to
the massive scale and exposure to vast amounts of data during
training), the scale and complexity of LLMs and transformers
continuously increase [11]. This requires larger training infrastruc-
tures and drastically escalates their energy footprint. Pre-training
of LLMs and transformers is known to take weeks if not months
even with powerful HPC systems. For this reason, related work
studies have dedicated significant attention to understanding and
accelerating the pre-training of LLMs [12], [13].

Scope: inferences are an equally important challenge because
once pre-trained, a transformer needs to serve a large number of
inferences submitted under concurrency by multiple users. For
instance, at Meta, inferences make up 65% of the total energy
consumption while pre-training only consumes 35% [14]. The
goal is to maximize the throughput of the inference requests
while minimizing the latency of each inference request, which is
difficult due to the growing complexity of inference frameworks.
However, despite this growing complexity, state-of-the-art
studies have dedicated comparatively less attention to inferences
compared with pre-training. This lack of insight is becoming a
significant limitation in the design and development of new infer-
ence techniques and ideas. In this paper, we aim to fill this gap.

The need to study KV caching: at the core of each LLM
inference request are two phases: (1) a prefill phase, during which
the entire input prompt is processed by the attention mechanism
in parallel, typically during a single forward pass; (2) a decode
phase that involves an iterative prediction of the next most likely
token (each in a separate forward pass), which is then appended to
the prompt and the process is repeated until a special termination
token or a maximum predefined number of tokens is reached.

To avoid redundant recomputations during each decode iter-
ation (whose attention layers repeatedly process the correlations
between all pairs of tokens), a Key-Value (KV) cache is used to
store previously computed keys (K) and values (V). Each KV pair
represents intermediate computations performed by the attention
layers on positional embeddings that can be reused from one
iteration to another. A fast KV cache has the potential to greatly
speed up the token generation and thus the inference requests.

There are two major factors that affect the effectiveness of KV
caching. First, inference requests are not processed in isolation,
because running a full forward pass to generate a single token
has a high initialization overhead and under-utilizes the potential
of modern GPUs for massive parallelism. Instead, the phases of
inference requests are batched together using various scheduling
strategies such that they share the same forward passes as much
as possible, while at the same time avoiding imbalance that
leads to stragglers [15]. Thus, batching results in complex access



patterns to the KV cache under concurrency. Second, since
GPU memory is much faster than host memory, the KV cache
needs to use the former for maximum benefits. However, GPU
memory is a scarce resource that is primarily consumed by the
model parameters and other data structures needed to run the
forward passes. While the model parameters and associated data
structures use a fixed amount of GPU memory, the space needed
by KV pairs grows linearly with sequence length and batch sizes
due to the auto-regressive nature of LLMs [16]. Consequently,
the KV cache often cannot hold all needed KV pairs in GPU
memory and needs to either evict some KV pairs to the host
memory or drop and recompute them later. This is a non-trivial
decision given the high cost of swapping to host memory vs. the
relatively simple recomputations needed to reconstruct KV pairs.

Contributions: this paper contributes in two important direc-
tions. First, it proposes a series of techniques to instrument state-
of-the-art inference frameworks (such as vLLM [17]) in order to
collect detailed qualitative and quantitative measurements during
concurrent batched inferences at fine granularity. Second, it uses
these techniques to characterize the behavior and impact of KV
caching under a variety of scenarios that involve different LLM
models, types of inference requests, batching strategies, and cache
eviction strategies. We summarize our contributions as follows:
• We highlight the need for hybrid instrumentation that gathers

metadata and performance metrics relevant to both GPUs
and CPUs, fast on-device buffering techniques for the
instrumentation of GPU kernels (notably GPU memory
accesses due to KV cache operations), and integration
with external tools (e.g., NSight) to log the unpredictable
interleaving of monitored tasks under parallelism (§ IV).

• We introduce a methodology to study the impact of KV caching
under concurrency. In particular, we focus on how to leverage
our instrumentation tool to capture relevant performance
metrics and metadata during the experiments, what inference
benchmarks and inference runtime settings to choose, and
what key qualitative and quantitative metrics to record (§ V).

• Based on the methodology, we run extensive experiments
that identify several interesting patterns and trends: batching
benefits inference throughput only up to a point, which is less
than the full context window; chunking of the prefill phase
has a significant negative impact on inference throughput
especially when the forward pass is fast; KV cache accesses
happen in bursts with significant idle time in between; there
is a complex trade-off between recomputations vs. swapping
to host memory (§ VI).

II. BACKGROUND

In this section, we briefly revisit important concepts that
modern inference frameworks are based on.

Transformer Inferences: Just like in the case of regular deep
learning models, inferences of transformer models are based
on forward passes that take a prompt (a sequence of tokens) as
input and generate a reply as output. The reply is the most likely
sequence of tokens that continues the prompt, similar in scope
to sequence-to-sequence models. Unlike regular deep learning
models, the reply is constructed iteratively, one token at a time.
This happens in two phases. First, the prefill phase generates
the first output token. Then, the output token is appended to
the prompt and the next output token is generated in the decode
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Fig. 1: Transformer Architecture (prefill phase + decode phase).

step. The decode step is repeated until a maximum number of
output tokens is reached or a special termination token (<EOS>)
is generated. The initial prefill and the successive decode steps
run each in a separate forward pass.

Transformer Architecture: is typically made of repetitive
blocks, each of which is based on attention layers [7] that capture
the meaning and the correlations between the tokens, which are
used in the predictions. Most popular generative Large Language
Models (LLMs) such as GPT [9], OPT [18], Llama [19], and
Qwen [20] are based on the decoder-only blocks that incorporate
self-attention layers, a specialization of attention layers that iden-
tify positional correlations between all pairs of tokens in a given
sequence of tokens. Besides attention layers, there are other layers
that are part of each block, but their role is beyond the scope of
this work. The architecture and inference process is illustrated in
Fig.1. The forward pass follows a sequential pattern: the output of
one block is used as input for the next block. Thus, parallelization
of computations happens within each block but not across blocks.
Once the final output token is generated, it is appended to the
prompt and the new input is used in the next forward pass.

Self-Attention Layers: the correlations captured by the
self-attention layers between all pairs of tokens are based on
positional embeddings that give each token a position-dependent
meaning. Specifically, given a sequence of tokens represented
as a vector X , three matrices Q=X ·Wq (queries), K=X ·Wk

(keys) and V =X ·Wc (values) are computed based on learned
weights Wq , Wk and Wv that project each token into a
multi-dimensional set of dk features. Then, an attention score for
all tokens A=(Q·KT ·V )/

√
dk is computed that is used further

in successive layers and blocks to eventually predict the next
token. Since these operations are matrix multiplications, they
are highly parallelizable. Furthermore, to capture correlations
from multiple perspectives simultaneously, Multi-Head Attention
(MHA) [7] is widely employed in LLMs, which relies on the
idea of using different Wq , Wk and Wv (heads) to compute
different attention scores in an embarrassingly parallel fashion
(another level of parallelism in addition to parallelization of
matrix multiplications), which are then aggregated into a final
attention score. Due to the large number and size of intermediate
data structures, attention layers consume large amounts of GPU
memory (e.g., about 5.5 GB for running 1 request with 1024
input tokens using the Yarn-llama-2-7B model in a single forward
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pass). Other attention optimizations (e.g., Grouped-Query
Attention (GQA) [21] and Multi-Query Attention (MQA) [22])
have been proposed to strike a trade-off between memory space
and quality. In this work we focus on traditional MHA.

KV Caching: after the prefill phase is done, it is important to
note that X remains unchanged in successive iterations except
for the last token that was appended. Thus, during the decode
phase, it is enough to compute only the attention of the new
token. We have a new row Qi=xnew ·Wq , but we can reuse KT

and V from the previous iteration (to which we append a new
column and row respectively that correspond to the new token).
With each newly generated token, KT and V are growing. Thus,
a naive caching solution that pre-allocates a contiguous memory
space to fit the worst-case scenario (maximum number of tokens)
is not only wasteful (most of the time, the termination token
is encountered before the maximum number of tokens), but also
prone to fragmentation and synchronization bottlenecks (due to
concurrent access). To avoid this issue, PagedAttention is used
by state-of-the-art KV caching approaches such as vLLM [17].
Specifically, the KV cache is organized into fixed-sized chunks
that can be allocated on-demand to accommodate the growth of
KT and V . Each attention head manages its own set of chunks,
which enables scalable access under concurrency. The access
patterns shift from write-intensive during the prefill phase to
read-intensive (with occasional writes) during the decode phase.
Fig. 2 illustrates vLLM’s Blocked KV cache data layout within
each Transformer Block.

Batching of Inference Requests: thanks to caching, the
decode phase needs to perform cheap incremental computations.
If only one inference request is allowed to run in each forward
pass, this would severely under-utilize the potential of GPUs
for massive parallelism. Even in the case of the prefill phase,
if the number of tokens in the prompt is small, this would also
lead to GPU under-utilization. Therefore, a common strategy
is to batch multiple independent requests together [23], [24]
such that they share the same forward pass. This is possible
because one can build large matrices out of independent requests
and simply use different weights (e.g. from different attention
layers) for different parts of the matrices inside the same GPU
kernels. Since each inference request spans over multiple forward
passes, different scheduling trade-offs are possible. For example,
Orca [25] proposes a fine-grained approach known as iteration-
level batching or continuous batching, which allows a new

inference request to join the current batch or an existing request
to leave the current batch at any iteration. Another important
aspect is how to interleave the prefill and decode phases. Some
strategies prioritize the prefill phases (i.e. batch together the prefill
phases of the scheduled inference requests, then, after all prefill
phases are done, batch together the decode phases). The intuition
behind this strategy is to achieve load balancing in the forward
passes during the decode phases (i.e., one token for each inference
request), at the expense of potential imbalance during the prefill
phases. For long prompts, this imbalance is significant [26]. Other
strategies mix prefill phases with decode phases. In this case,
the prefill phases may stretch over more forward passes than
in the previous case, increasing the risk of stragglers that slow
down some forward passes, but on the upside, the load balancing
of the initial forward passes may be better. Another common
optimization is chunking of the prefill phase: instead of trying
to fit the full prompt of an inference request in a forward pass, a
fixed maximum number of tokens (chunk size) can be taken from
each inference request. This approach is illustrated by SarathiS-
erve [26] and DeepSpeed-MII [27] and results in better load
balancing when batching prefill phases together, at the expense of
stretching the prefill phases over more forward passes. Batching
strategies have non-trivial implications on KV caching because
they increase the number of accesses under concurrency propor-
tionally to the degree of load balancing (i.e., the better the load
balancing is, the more concurrent accesses to the KV cache, thus
putting more stringent scalability requirements on the KV cache).

KV Cache Swapping vs. Recomputations: when activating
batching, the KV cache needs to hold the continuously growing
KT and V matrices of multiple self-attention heads belonging to
multiple inference requests at the same time. Given that the spare
GPU memory used for caching is scarce (especially when using
large transformers with many parameters), it is not feasible to fit
all these intermediate results in the spare GPU memory in most
situations. Thus, the KV cache needs to implement an eviction
policy. A common system-level solution is to use multi-level
caching that simply evicts some cache chunks to the host
memory, then brings them back to the GPU cache when they
need to be read, which is similar to the swapping mechanism
employed by operating systems to run out-of-core processes.
However, swapping to host memory is typically a slow I/O
operation (it is subject to the low bandwidth of PCI-Express
links that typically connect GPUs with the host side). Given the
low latency of GPU memory accesses and massive parallelism
of GPU computations, under certain circumstances, it may be
faster to recompute some KT and V matrices instead of using
swapping. In this case, the eviction policy of the KV cache
can simply drop some cache chunks. The question of when
is swapping beneficial over recomputations and the other way
around is non-trivial since it depends on many factors: batching
strategy, complexity of the computations in the forward passes,
etc. Therefore, it is important to study this dimension.

III. RELATED WORK

In addition to the strategies mentioned in § II, there are several
other batching and KV caching optimizations that were described
in the literature. FastServe [28] uses iteration-level preemptive
scheduling to minimize queuing delays for the batching of long



requests, thus enabling better load balancing when there is signifi-
cant variability in the inference request sizes. Multi-level caching
using disaggregated resource management is also a popular di-
rection. For example, systems like Splitwise [29], DistServe [30],
and TetriInfer [31], separate the prefill and decode phases,
allowing their scheduling and batching on different compute
nodes. Such approaches enable better utilization of the aggregated
GPU memory of multiple GPUs, at the expense of introducing
I/O overheads due to the need to access remote GPU memory
in order to reuse K and V . SwapAdvisor [32] uses genetic
algorithms to control memory allocations and swap decisions.
vDNN [33] employs offloading and prefetching. TSPLIT [34]
uses tensor splitting to enable fine-grain control of the KV cache.
vLLM [17] uses either recompute or swap, implementing an
all-or-nothing eviction policy configurable by the user. On the
other hand, STR [35] can dynamically combine both techniques.
Given the multitude of trade-offs, many such approaches are
complementary and can be combined. For the purpose of this
work, we stick to the most popular strategies mentioned in § II.

Profiling of Transformer Inferences: The PyTorch Pro-
filer [36] coupled with the PyTorch ecosystem is capable of
monitoring GPU memory usage and categorizing it over time.
NSight System [37], NVIDIA’s profiler, focuses on profiling
GPU kernels, their interleaving across different streams and
their overlappings with host-GPU memory transfer operations.
Omnitrace [38] serves as AMD’s equivalent solution. For Python-
based applications, Scalene [39] provides high-precision, per-
line memory profiling, capable of detecting memory leaks and
tracking GPU memory trends in real-time. Such low-level tools
are indispensable building blocks for tools that aim to understand
higher-level patterns under concurrency. Despite many optimiza-
tion strategies introduced by state-of-the-art for transformer
inferences, there is limited availability of tools and studies that
help understand the patterns of KV caching. To our best knowl-
edge, we are the first to build such tools and use them for the
purpose of capturing and characterizing the impact of KV caching
on transformer inferences under various degrees of concurrency
introduced by batching, as well as different KV caching strategies.

IV. INSTRUMENTATION

Our first contribution is an open-source 1 tool that can be used
to instrument state-of-the-art inference frameworks for the pur-
pose of understanding KV caching patterns at fine granularity. We
illustrate and implement our instrumentation tool based on vLLM,
but the underlying ideas and design principles are generic and
can be applied for other frameworks such as DeepSpeed-MII [27].
Specifically, our tool is based on the following design principles:

Hybrid collection of metadata and performance metrics:
during the forward passes needed to run the inference requests,
there is a tight interaction at fine granularity between the host
and GPU side. For example, tasks that start on the host side need
to schedule GPU kernels and memory copy operations, but may
finish on the GPU side. Thus, coordinating the timestamps
of events that are triggered on different devices is needed
in order to accurately measure the duration of representative
metrics. To enable such capability, we build an event management
infrastructure that allows GPU kernels to directly record when

1https://github.com/Jye-525/UnBoxKV-IO

an event happens in a separate on-device buffer, which is
then flushed to the host memory and combined with host-
side buffers later in order to match the events and generate
the desired metrics. This approach has two advantages: (1) it
avoids the synchronization overheads introduced by host-side-
only monitoring approaches (e.g. waiting for CUDA events); (2) it
avoids the overheads of in-situ processing, aggregation, or logging
of metrics. This is important for the purpose of minimizing the
influence of instrumentation on the accuracy of the measurements.

On-device multi-buffering to capture KV cache access pat-
terns: The most challenging aspect of understanding the impact
of KV caching on inferences is to accurately capture the duration
of the very fast operations such as reads and writes to the GPU
memory where the working set of the KV cache is residing (and
thus where the most frequent accesses under concurrency happen).
Due to the organization of the KV cache as chunks rather than
as a contiguous space and the parallelization at different levels
(batching, multi-head attention layers), it is often the case that
read and write operations happen in different GPU kernels. Thus,
it is not enough to coordinate events between the host side and the
GPU side, but also between different GPU kernels. Furthermore,
since the accesses happen under concurrency, the recording of
events also needs to happen under concurrency, raising scalability
issues. As a consequence, we cannot afford to log individual
events directly from GPU kernels. Instead, we devise a strategy
that allocates separate, on-device buffers where related read and
write events are grouped together and collected. Each read and
write event only records minimal metadata. The buffer size is
large enough to hold all events produced by all concurrent threads
in a single iteration. Between iterations, these buffers are flushed
to the host memory and then processed asynchronously on the
CPU. To avoid the need for synchronized access to the buffers,
each thread is assigned a separate segment of the buffer and the
events are interleaved later during the asynchronous processing.

Complement Low-Level Profiling Tools: we need to com-
plement the events and measurements of operations that happen
within GPU kernels with performance profiling information that
is collected by low-level tools such as NSight [37]. To this end,
we opted for a post-processing infrastructure that leverages the
SQLite database format provided by NSight to load the time-
series of events into Pandas DataFrames. Then, we combine the
time-series with the JSON files, which results in a unified view
of all performance metrics and metadata needed for the analytics.

V. METHODOLOGY

A. Leveraging the Instrumentation Tool

Using our tool described in § IV, we have instrumented
the forward pass of vLLM [17] as follows. We identi-
fied in what GPU kernels the writes and reads to the
KV cache are issued (reshape_and_cache_kernel and
paged_attention_kernel respectively). Then, we di-
vided the read logging buffer into two segments: the first segment
logs the K cache read events, while the second segment logs
the V cache read events. The separation is important because
K and V are accessed at different times during the attention
computation. For GPU events, we log the chunk ID, offset in
the chunk, duration of operation, thread ID. On the host side,
we record the metadata of each transformer block’s time slice

https://github.com/Jye-525/UnBoxKV-IO


TABLE I: Configurations of different models.

Model Yarn-Llama2-7B Llama-3.1-8B OPT-13B
Model Size (GB) 14 16 26
Hidden Size 4096 4096 5120
Layers 32 32 40
Attention Heads 32 32 40
Key-Value Heads 32 8 40
Max Context-Length 64K 128K 2K

during the forward pass (ID of the forward step, ID of the
transformer block, the kernel start/end timestamp, each request
start/end timestamp, and additional metadata corresponding to
what requests were batched together in the forward pass). The
asynchronous post-processing on the CPU reconstructs the event
timeline by interleaving the event timestamps for each read and
write request and their corresponding forward pass orders. We
then leverage the resulting time-series to capture the duration and
composition (what requests are batched together) of the forward
passes, as well as the read/write access pattern at fine granularity.

B. Metrics

We employ different metrics in our experiments according to
different exploration scenarios. We often use throughput (tokens
per second) when exploring how different batching strategies
impact the inference performance, which is either aggregated
over multiple forward passes per-phase (prefill vs. decode) or
over both phases (reflecting the end-to-end performance). Token
throughput is not sufficient to explain the impact of KV cache
evictions. Therefore, for recomputation vs. swapping studies,
we utilize the resume overhead and KV cache utilization as the
key metrics. Specifically, we measure the aggregated time taken
to generate a new token when resuming the evicted inference
requests (recomputation duration and swap-out/swap-in duration
respectively), accounting only for the delays caused by the
recomputation vs. swapping for the group of batched requests
(thus accounting for overlaps during concurrency). The KV
cache utilization, represented as a percentage, is calculated
by dividing the number of blocks currently in use by the total
number of blocks available in the cache.

C. Workloads

Models: in our evaluations, we use three representative LLMs
of different sizes and attention mechanisms summarized in Table I.
Yarn-Llama-2-7B is an extension of the widely used Llama-2 7B
model for supporting longer context instead of the default 4K
tokens. Llama-3.1-8B is a more recent model using GQA wherein
4 attention heads share a key-value head to save KV cache mem-
ory, demonstrating a different architecture in transformer blocks.
Lastly, we study the OPT-13B model, the largest among widely
used models that fits an A100-40GB GPU. The Yarn-Llama-2-
7B and Llama-3.1-8B models use BF16 precision to support a
wider range of values for the model parameters, while OPT-13B
model uses FP16 precision to preserve accuracy constraints.

Fine-tuning of batching and caching strategies: vLLM
provides parameters to enable or disable chunked-prefill and
to set the chunk size. We extend vLLM by adding another
user-configurable parameter to enable or disable mixed batching.
If both mixed batching and chunked-prefill are off, vLLM will
use its default continuous batching. Additionally, we modify

vLLM to make recompute and swap configurable for evaluating
KV cache overflow management.

Dataset and inference request patterns: we use the
SharedGPT [40] dataset, a collection of user-shared conversations
with ChatGPT, in which sequence lengths range from 4 to 2.3K
tokens. Besides SharedGPT, we also use synthetic datasets gener-
ated by a fixed-length generator and a variable-length generator
that follows a Zipf distribution. The generator allows us greater
flexibility at controlling the input and output sequence lengths. It
produces random tokens, which is acceptable because we are only
interested in the performance metrics, and they are not affected by
the content of the tokens. We choose the Zipf distribution because
most real-world datasets adhere to it [41]. The fixed-length
generator produces requests with predefined prompt and output
lengths, while the variable-length generator creates requests
with sequence lengths within a specified range, allowing for a
configurable prompt-to-output ratio. These synthetic datasets
help us analyze the impact of the KV cache on inference and
the handling of KV cache overflow under different conditions.

D. Experimental Setup

Platform: we conduct all the experiments on the ALCF’s
Polaris platform 2, a 560-node HPE Apollo 6500 Gen 10+ based
system. Each node has 4×A100 GPUs with 40 GB HBM2 on
each (aggregated GPU memory of 160 GB), 1× AMD EPYC Mi-
lan 7543P processor with 32 Zen3 Cores (64 threads), 1×512 GB
DDR4 RAM, and 2× NVMe SSDs of 1.6 TB each. The GPUs are
interconnected via NVLink (600 GB/s). The peak unidirectional
host-to-device (H2D) and device-to-host (D2H) throughput for
pageable host memory are 19 GB/s and 12 GB/s respectively.
For pinned host memory, the H2D and D2H throughputs are
24.5 GB/s and 26.1 GB/s. Since we aim to explore the KV cache
impact on inference by studying the widely used moderate-sized
models (≤13B), we limit our experiments to a single A100 GPU.
This setup allows us to better analyze the intricate memory behav-
iors and impact of the KV cache, providing a baseline for under-
standing the potential limitations. Moreover, single-GPU config-
urations are commonly adopted in real-world cloud deployments
due to cost and power limitations, highlighting the importance
of evaluating single-GPU performance across various models.

Software: each node runs NVIDIA Driver 535.154.05,
CUDA 12.4.1, Python 3.11.8, and PyTorch 2.2 on top of the
Cray SUSE Linux Enterprise Server 15.4 OS. Our experiments
utilize the vLLM (0.4.2) to serve inference queries since it is
popular in the community and many studies use it as a baseline
for comparison [42], [43].

VI. ANALYSIS

Based on the methodology discussed in § V, this section
studies the behavior and patterns of running inference requests
under various scenarios as introduced below.

A. Throughput under Different Batching Strategies

First, we assume enough GPU memory is available to run
all scheduled inference requests without overflowing the KV
cache capacity allocated from spare GPU memory. This is a
best-case scenario that maximizes the benefits of KV caching.

2https://docs.alcf.anl.gov/polaris/hardware-overview/machine-overview/

https://docs.alcf.anl.gov/polaris/hardware-overview/machine-overview/


1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

Batch Size (Num. of Reqs in a Fwd)

8K

4K

2K

1K

512

256

128

64

32

16

In
p

u
t 

L
e
n

g
th

 o
f 

a
 R

e
q

2K

4K

6K

8K

10K

12K

14K

16K

T
h

r
o
u

g
h

p
u

t 
(t

o
k
e
n

s
/s

)

(a) Throughput of fixed-length prefill-only
inference requests (Yarn-llama-2-7B model).

4 8 12 16 20 24 28 32

Batch Size (Num. of Reqs in a Fwd)

0

2k

4k

6k

8k

10k

12k

14k

16k

T
h

r
o
u

g
h

p
u

t 
(t

o
k
e
n

s
/s

)

wl-1 (thrpt)

wl-2 (thrpt)

wl-1 (tokens)

wl-2 (tokens)

0

1k

2k

3k

4k

5k

6k

7k

8k

N
u

m
. 

o
f 

to
k
e
n

s
 i
n

 a
 F

w
d

(b) Throughput of variable-length prefill-only
inference requests using two different
randomized orders (Yarn-llama-2-7B model).
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Fig. 3: Throughput of prefill-only or decode-only requests processed in a forward pass.

Prefill vs. Decode phase: given the distinct computational
characteristics of the prefill and decode phases, we begin
with a study that isolates their performance. Fortunately, this
has already been implemented by the batching strategy that
prioritizes the prefill phase.

Fig. 3a shows the throughput of the prefill phase when using
fixed-sized inference requests (using the generator mentioned in
§ V-C) batched together in the same forward pass. We chose the
Yarn-llama-2-7B model that supports a relatively large context
window of 8K tokens while leaving enough spare GPU memory
available to enable full GPU caching. We run a single forward
pass and fill the context window with an increasing number of in-
ference requests of variable sizes (starting from a large 8K token
request up to 512 inference requests of 16 tokens each). As ex-
pected, the peak throughput is reached when the context window
is fully filled. There is minimal difference in terms of how many
requests are used to fill the context window, showing that the
fused matrices that are computed in the same kernels using differ-
ent attention layers have negligible overheads. Interesting to note
is that the token throughput is close to peak also when the context
window is only half full, which means it is not necessary to fill the
full context window in order to saturate the parallelism of GPUs.

Fig.3b focuses on variable-length inference requests, which
are generated from the SharedGPT dataset. Again we vary the
batch size (number of requests sharing the same forward pass).
This time, depending on what inference requests are batched
together, the total number of tokens may differ for the batch size.
To study this effect, we shuffle the inference requests to obtain
two different orders (denoted wl-1 and wl-2). The total number
of tokens as a function of batch size is on the right side of the Y-
axis, while the corresponding throughput is on the left side of the
Y-axis. A similar observation as in the case of fixed-sized requests
applies: the total number of tokens is the most impactful factor
that determines the throughput, and a high throughput is reached
even when the context window is significantly under-utilized
(even at 25% utilization we reach 75% of the peak throughput).
While not explicitly illustrated, we verified that the same
observations hold for other models (OPT-13B and Llama-3.1-8B).

Fig.3c shows the throughput of decode-only requests across
various batch sizes running with different models. In this
case, there is no difference between fixed-sized requests and

variable-sized inference requests, because in both cases the
forward pass processes one token from each request. As
expected, the throughput is solely affected by the batch size
(number of requests). It grows rapidly for a small number
of requests and exhibits a slowdown later. The transformer
architecture also plays an important role: the OPT-13B model
peaks at 4k tokens/second, while the other models can go much
higher. In any case, given the extreme granularity of requests
during the decode phase (a single token), the overall throughput
is much lower compared with the prefill phase).

Key observations: the prefill stage reaches close to peak
token processing throughput even when the context window
of the forward pass is significantly under-utilized. KV caching
performance is not affected by such differences. This has
important implications in the design of batching strategies,
as it leaves a significant degree of freedom in terms of
how many forward passes to run and how many requests
to batch together in each of these forward passes. A similar
observation holds for the decode phase. However, in this
case the peak throughput is much lower, resulting imbalance
between the two phases that needs to be accounted for.

Continuous-batching vs. chunked-prefill: as explained in
§ II, a common strategy to avoid long forward passes due to
imbalance caused by the prefill phase of large inference requests
is to split the prefill phase into chunks. However, this comes at the
expense of overheads due to chunk management and launching of
multiple forward passes. Thus, in our next series of experiments,
we aim to understand this effect. For continuous-batching, we
evaluated two approaches: (1) vLLM’s prefill-prioritizing policy,
which handles prefill and decode requests in separate forward
passes, and 2) a mixed (or hybrid) policy, which allows to
process prefill and decode requests together in a forward pass.

Fig.4a shows the throughput of a single 8K request (prefill
phase) that fills the whole window of the Yarn-llama-2-7B model
(8K) used in the experiment. Since we are dealing with a single
request, the prefill-prioritizing vs. mixed batching are equivalent
and we refer to it as non-chunked. We compare this with the
chunked-prefill batching using a variable chunk size (number of
tokens included on the X axis). With a smaller chunk size, the
number of forward passes increases. As expected, the throughput
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request using variable chunk sizes (Yarn-llama-
2-7B model, 8K context window).
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Fig. 4: Throughput and the number of forward passes for continuous vs. chunked-prefill batching.
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of running the prefill of the entire request drops dramatically for
a smaller chunk size. Interesting to note is that an 8K chunk size
(thus a single forward pass) does not reach the same throughput
as the non-chunked batching strategies. This is due to the vLLM
using the more efficient FlashAttention2 algorithm [44] for
processing non-chunked requests, while chunked-prefill requests
are limited to a less efficient implementation.

Fig.4b presents the end-to-end throughput (prefill and decode)
for 20 variable-length requests using the Yarn-llama2-7B model,
configured with different context windows. The goal is to inves-
tigate if the context window impacts throughput. We create 20
variable-length requests using the Zipf generator and send them
to vLLM simultaneously. We observe that the context window has
minimal impact on the throughput for a given batching approach
(which is consistent with the observations about limited impact
of under-utilizing the context window). Interesting to note though
is that prioritizing the prefill phase vs. allowing mixed prefill
and decode phases show minimal differences in favor of the
latter. Also surprising is the sharp drop in throughput when
comparing the chunked-prefill strategy with the non-chunked
strategy: while the number of forward passes plays a significant
role (visible drop going from 4K to 512 chunks), more important
is the impact of the flash-attention optimizations.

To complement the previous results, Fig.4c depicts the end-
to-end throughput for 20 variable-length requests using different
models, configured with the same context window (i.e., 2K),
across various batching strategies. The goal is to assess whether
the model architecture affects throughput. The workload used is
the same as in Fig.4b. Our findings show that model architecture

impacts the throughput when using continuous-batching approach.
For instance, OPT-13B model is about 1.7x slower than the Yarn-
llama-2-7B model, which can be attributed to its higher computa-
tional demands since more transformer blocks and more attention
heads per block. Additionally, model architecture has minimal
effect on throughput when using the chunked-prefill approach.

Fig.5 presents the utilization of the Yarn-llama-2-7B model’s
context window (4K) over 20 forward passes across various
batching strategies. The goal is to explore to what degree the
context window is filled over time from one forward pass
to another. As expected, the 4K chunked-prefill strategy and
continuous-batching fully utilize the model’s context length in
the beginning, but all approaches see a sharp drop later. Given the
performance penalty of chunking, this means it may be beneficial
to deactivate chunking later when the decode phase dominates.
Key observations: Although promising as a strategy to
improve load balancing during the prefill stages of batched
inference requests, chunking strategies currently suffer from
limitations caused by sub-optimal implementation of attention
computations, which results in low throughputs even in the
presence of KV caching. Another limitation is the unnecessary
overhead of using chunking strategies (even with optimal
attention implementations) when the decode phases dominate
the forward passes. This leaves an opportunity to design
adaptive strategies that selectively use chunking based on
the prefill imbalance.

B. KV Cache Access Patterns

Based on the instrumentation described in § V-A, in our next
series of experiments we aim to understand the KV cache access
patterns under concurrency. Just like before, we still assume the
KV cache is large enough to avoid recomputations or swapping.
Fig. 6a illustrates the KV cache write pattern over time. It covers
5 forward passes (F1-F5) for 4 inference requests of variable
sizes (R1-R4). For simplicity, we only show the write pattern
in transformer block 0 (it is repetitive for the other transformer
blocks). Also, due to the large number of cache chunks and
write operations involved, we depict the cache chunk ID (instead
of memory offset on the Y axis). The figure shows two distinct
patterns corresponding to the prefill and decode stages. Between
the stages (prefill or decode), there are significant gaps, which is
why the X-axis shows interruptions. As can be observed, most of
the writes happen in the prefill phase in parallel (same beginning
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Fig. 6: KV cache write and read pattern over time in transformer
block 0, covering 5 forward passes of 4 inference requests.
The Y-axis denotes the chunk ID of the K or V cache. Each
cache chunk is 128 KB (a K or V cache in a single transformer
block). All transformer blocks hold the same number of KV
chunks. The model is Yarn-llama-2-7B.

timestamp) across different cache chunks. This shows that multi-
head attention parallelization combined with batching puts high
concurrency pressure on the KV cache initially. Later, during the
decode phases, incremental computations on a single token result
in much less write pressure overall, but still under concurrency.
During the gaps in the X axis, other transformer blocks (running
serially) repeat the same pattern. Interesting to note though is
that there are significant periods of no KV cache accesses even
outside of the gaps (due to the computations of other layers).

Fig. 6b is symmetrical to the previous figure but focuses on the
read pattern under concurrency. As expected, no read accesses
happen during the prefill phase (as there are no previous interme-
diate results that can be reused). In the case of the decode phases,
there are several interesting observations. First, the read pattern re-
peats not only from one forward pass to another, but is also highly
predictable within each forward pass. Specifically, each inference
request accesses the cache blocks in increasing order of IDs
(even under multi-head attention parallelism) and never switches
back and forth between different cache chunks. Second, there is
less read parallelism within the same inference request compared
with the write pattern (different start timestamps). However, there
is full parallelism across different inference requests. Third, there
is a significant lag between the K accesses and V accesses.

As depicted, no KV cache read during the prefill stage and
most read operations occur during the decode stages. Each
decode step needs to read all the previously computed keys and
tokens for each request. Moreover, other decode steps follow
a consistent Key cache and Value cache read pattern. In every
transformer block of a decode step, all requests read from the
Key cache simultaneously and read the Value cache after the key
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Fig. 7: A comparative illustration of recomputation and swap
approaches for managing KV cache overflow.

cache. Within a given request, although each request reads the
cache chunks (key or value cache chunks) in parallel, its read
parallelism is configured based on the number of CUDA warps
(e.g., it is 4 in this test case). Additionally, the time cost of a
decode step is about 25ms, which is long enough for perfecting
the KV cache of the next step in advance. The sequential
access between transformer blocks makes it possible to interleave
offloading and prefetching the KV cache during a forward.

Key observations: The write pattern shows significant periods
of inactivity within the same phase of the same transformer
block, both for prefill and decode. Furthermore, since trans-
former blocks are processed serially, even larger periods of
inactivity are observed between the phases of the same block.
This means the cache chunks are immutable for long periods
of time. Coupled with highly regular and relatively scarce read
patterns, this leaves ample opportunities to asynchronously
reorganize and dynamically optimize the KV cache (including
swapping strategies) that can be exploited by future work.

C. Recomputations vs. Swapping

Next we focus our studies on scenarios that require more
KV cache space than is available on the GPU, which triggers
an eviction policy that is either based on recomputations or
swapping, as mentioned in § II.

Behavior of recomputations vs. swapping: to understand
better how these two opposing strategies impact the KV caching
behavior when the inference requests are batched together, we il-
lustrate in Fig. 7 a representative example. Consider two inference
requests, A and B, that are batched together. The key observation
is that we don’t know apriori how many tokens each of these two
requests will generate, which means we don’t know how many
decode phases each of them will trigger, and, important for the
purpose of KV caching, how much cache space to reserve. Thus,
inference frameworks implement an optimistic approach. They
allow both of them to share the same forward pass as long as there
is enough cache space available on the GPU. However, with each
new forward pass, the KV cache fills up. When no more space is
available, B is suspended and its K and V matrices evicted such
that A can continue. The two strategies differ only in terms of how
evictions are handled: swapping blocks until K and V are flushed
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Fig. 8: Overhead of recomputations vs. swapping for a single
eviction for variable KV cache chunk size and number of
evicted tokens (Yarn-llama-2-7B model, 16K context window).

to host memory, while the recomputation strategy simply drops
them. Later, when A has finished, B can resume. At this point,
the swapping strategy resumes the decode phases by bringing K
and V back to the GPU cache from the host memory, while the
recomputation strategy starts from scratch with the prefill phase.

Key observations: Important to note is that the recomputation
strategy may introduce prefill stages at any point, thus
complicating the load balancing that the batching strategy
aims to achieve. Thus, the KV caching eviction policy
has significant implications on the batching strategy,
underlining the importance of co-design. Furthermore, current
implementations handle cache evictions at the granularity
of a full request. This is suboptimal if the inference requests
chosen to continue overflow the KV cache capacity only by a
small amount, highlighting an opportunity for partial evictions.

Variable KV cache chunk size: recomputation vs. swapping
strategies are impacted by a variety of factors. Next, we isolate
the effect of such important factors. One such factor is the KV
cache chunk size, which affects the performance of swapping
(many small GPU-host transfers achieve a lower I/O throughput
compared with fewer larger transfers). Note that the KV cache
chunk size S is a function of number of tokens and other
model parameters (specifically S=2·N ·L·D ·sizeof(FP16),
where N is number of tokens, L is number of transformer
blocks, D is size of K and V per token). The result is doubled
because K and V occupy the same amount of space each. For
Yarn-llama-2-7B L and D are 32 and 4096 respectively. We
use N instead of S when referring to cache chunk sizes, since
the KV cache is configured using N instead of S.

To study this effect, we generate two large synthetic requests
R1 (430 prompt tokens and 1024 reply tokens) and R2 (3600
prompt tokens and 496 output tokens) that force a single eviction.
We batch them together and run the corresponding inferences. In
the case of the swapping strategy, we evaluate two approaches to
allocate the host memory: pageable and pinned memory pages.
The former provides slower I/O transfer throughput but allows
the OS kernel more flexible host memory management (e.g. to
allocate unused pages for filesystem caching). The latter allows
faster I/O transfers thanks to DMA that does not involve the
CPU, at the cost of reserving the memory pages for exclusive
access. Fig. 8a depicts the results. As expected, the KV cache
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chunk size has minimal effect on recomputation overhead
because recomputations access only the GPU memory, which is
optimized for small accesses. On the other hand, small chunks
significantly increase the overhead of the swapping strategy, as
host-GPU memory transfers are not optimized for small sizes.
Interesting to note is that both pageable and pinned host memory
suffer from similar decrease in performance for decreasing
chunk sizes, which can be explained by the fact that the paging
overhead remains constant (a host memory page is small, usually
4 KB). Also interesting to note is that paged host memory
is not fast enough at any KV cache chunk size to offset the
recomputation overheads. On the other hand, pinned host memory
does so even at small chunk sizes (16 tokens or about 8 MB).

Variable number of evicted tokens: next we study how
much slowdown the inferences suffer as the evicted size S
(corresponding to an increasing number of tokens N , X axis of
Fig. 8b) varies. In this case, we configure the swapping strategy
to use only pinned host memory and a fixed cache chunk size
of 16 tokens. Similarly, we use two synthetic inference requests
R1 and R2, but vary prompt and output sizes such that a single
eviction is triggered for R2 after a given number of tokens was
processed. As expected, both strategies experience an increasing
slowdown for an increasing quantity of cached data being evicted.
However, there is an increasing gap between recomputations and
swapping, with the latter exhibiting a significant edge (almost
20%) over the former especially at a large quantity of evicted
intermediate results (corresponding to 8K and 16K tokens).

Variable sequence length (prompt + reply): next, we study
the impact of variable sequence length (the sum of prompt and
reply length). We evaluate both fixed-length and variable-length
requests generated using a fixed-length and Zipf generator, as
explained in § V-C. For variable-length requests, we configure
the prompt-to-output ratio to 0.5 to emulate the short input
and long output scenarios. The requests are sent to vLLM
simultaneously. As can be observed in Fig.9, the overhead from
recomputation and swapping increases for an increasing sequence
length, regardless of whether the requests are fixed-length
or variable-length. Swapping has a noticeable edge for very
large fixed sequence lengths. This edge diminishes in the case
of variable sequence lengths thanks to less recomputation
overheads, but nevertheless is noticeable in all configurations.

Variable number of submitted inference requests: vLLM
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Fig. 10: Overhead of recomputations vs. swapping for a variable
spare GPU memory allocated for KV caching and different
LLM architectures.

enqueues all received requests and batches them together based
on a first come first served basis. This also impacts the KV
caching behavior. To study this effect, we vary the number of
requests simultaneously enqueued from 32 to 128. These requests
are generated apriori using our synthetic workload generator and
reused across all configurations (to enable a fair comparison). As
expected, Fig. 9 shows an increasing overhead for an increasing
number of enqueued requests due to an increasing number of
evictions during batching. The increase in overhead is predictable
(2x increase in number of enqueued requests results in at least 2x
higher overhead). Again, swapping has a slight edge due to accu-
mulated small differences in overheads over multiple evictions.

Variable spare GPU memory for KV caching: another
important parameter that affects the number of evictions is the
available spare GPU memory for KV caching. To study the
impact of this parameter, we use several sizes: 6 GB, 10 GB,
14 GB, 18 GB, 22 GB, and 24 GB. To trigger a significant
number of evictions, we generate 128 variable-length requests
using our synthetic Zipf generator (with a prompt-to-output
ratio of 0.5), which roughly follows the distribution of sequence
lengths encountered in the SharedGPT benchmark. Like before,
the requests are submitted simultaneously to vLLM. Fig 10a
confirms the overhead of both recomputation and swapping
decreases for an increasing spare capacity reserved for the KV
cache, which is expected due to less evictions. Interesting to note
is that swapping outperforms recomputations when the spare
GPU capacity is scarce, an effect that can be explained by the
fact that recomputations trigger prefill phases, which when they
are not isolated incidents begin to cause scheduling issues due
to load balancing, in addition to the individual recomputation
overheads. The situation is reversed for large KV cache capacity,
in which case recomputations outperform swapping.

Variable transformer architecture: the transformer
architecture has an impact not only on the sizes of the KV
cache chunks (different sizes of K and V per token) but also on
the duration of the forward passes. Both aspects directly impact
the overhead of the swapping and recomputation strategies
respectively. To understand this impact, we evaluate three
different models: OPT-13B, Yarn-Llama-2-7B, and Llama-3.1-8B.
The configuration of each model is described in Table I. During
the experiment, we reserved 10 GB of GPU memory for the KV
cache. Again, we generate 128 variable-length requests using our

synthetic Zipf generator (the sequence length of each request is
within [512, 2048]) and then send them to vLLM simultaneously.
Fig.10b shows that OPT-13B has the highest overhead (e.g., about
10.4 seconds with recomputation and 7.2 seconds with swapping),
while the Llama-3.1-8B model has the lowest overhead (e.g., 0.38
seconds with recomputation and 0.34 seconds with swapping).
The higher overhead is expected since OPT-13B is the larger
model and therefore has higher computational complexity and
longer forward passes. Additionally, it triggers more frequent
evictions compared with the other two LLMs. These two factors
contribute to a clear advantage of swapping over recomputations
in the case of OPT-13, while its advantage over recomputations
is significantly diminished for the other two LLMs.

Key observations: Swapping strategies are not effective
unless the allocated host memory is pinned, which reduces
the opportunities for the OS to optimize the host memory
management. Small KV cache chunk sizes result in many
simultaneous evictions, especially for large inference requests,
which reduces the host-GPU memory I/O transfer throughput
and thus diminishes the effectiveness of swapping. However,
large cache chunk sizes may result in under-utilization.
Fine-tuning is necessary. Swapping keeps an edge over
recomputations for most other variable parameters: number
of evicted tokens, variable sequence length, number of
simultaneously submitted requests. Swapping is better than
recomputations when the spare GPU memory is scarce, but
worse when the spare GPU memory capacity is large. The
model architecture plays an important role, as it affects the
sizes of cache chunks, duration of forward passes and number
of triggered evictions. Overall, there are complex trade-offs that
motivate the need for novel adaptive multi-level KV caching.

Study of KV cache utilization: to zoom on the findings
discussed above, we selected three representative scenarios:
(1) 16K evicted tokens (from the variable number of evicted
tokens experiments); (2) 6 GB of spare GPU memory allocated
to the KV cache (from the variable GPU spare capacity
experiments); (3) OPT-13B model (from the different model
architecture experiments). These scenarios represent extremes
that underline the differences in behavior between the swapping
vs. recomputation strategies.

Fig.11a showcases the GPU and CPU KV cache utilization
over time for a single 16K token eviction. In this case, the GPU
KV cache utilization rapidly increases to 95% within about 1.2
seconds (corresponding to the prefill phase), then slowly increases
over time until the KV cache eviction is triggered (during decode
phases). After the eviction (at 15 seconds), the GPU KV cache
utilization significantly decreases for both recomputations and
swapping. When the evicted request is resumed at 24.5 seconds,
the GPU KV cache utilization increases for both recomputations
and swapping, while the host cache utilization decreases for
swapping. This clearly shows that swapping interrupts the infer-
ence process during both eviction and resumption due to blocking
transfers between the GPU and host memory. In contrast, recom-
putations only interrupt the inference process during resumption.

Fig.11b illustrates the GPU and host cache utilization over
time for a small spare GPU memory cache of 6 GB. The GPU
cache utilization starts at nearly 100% and remains almost stable
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Fig. 11: GPU and CPU KV cache usage over time when using recompute vs. swap approach by selecting three cases from
the overhead experiment.

with a fluctuation between 80% and 100% until the end for both
recomputations (grey curve) and swapping (dotted orchid curve).
This small fluctuation is caused by constant KV cache evictions,
but overall the utilization remains high as expected. For the
swapping approach, the CPU KV cache shows a bursty increase
(reaching 6% at the peak) at the beginning (within the first 20
seconds), followed by a drop to almost 0. This indicates that
there is a significant amount of data movement between GPU
memory and host memory in the initial stage. After the first 20
seconds, the host cache repeats a pattern of utilization between
0% to 2%. These fluctuations correspond to evictions, another
confirmation of frequent evictions under scarce GPU memory.

Fig.11c showcases the GPU and host KV cache utilization
over time for the OPT-13B model. We observe the GPU KV
cache starts with nearly 100% utilization and remains almost
stable with a fluctuation between 80% and 100% until the end
for both recomputations (grey curve) and swapping (dotted
orchid curve). Again, the fluctuations are caused by evictions. In
the case of swapping, the host KV cache shows a bursty increase
(reaching 10% at the peak) in the beginning (within the first
31 seconds), followed by a drop to almost 0. Again, this can be
traced back to a significant amount of data movement between
GPU and host memory in the initial stage. Similarly, after the
first 31 seconds, the host cache utilization frequently increases
and decreases within a range between 0% and 4%. This is also
a confirmation of frequent evictions in the case of the OPT-13B
model, though the amount of data transferred between GPU and
host memory is significantly smaller than in the initial stage.

Key observations: Studying the KV cache utilization for both
GPU and host memory is an important tool in understanding
how evictions impact the effectiveness of KV caching.
Synchronous data transfers between the host and GPU memory
leave a clearly observable trace, with large data movements in
the beginning that gradually become smaller later. Combined
with the access pattern analysis in § VI-B, these patterns
hint at opportunities to hide the overhead of GPU-host data
transfers through asynchronous cache management techniques.

VII. CONCLUSIONS

Despite inferences being an integral part of modern LLM
usage, there is a gap in the state-of-the-art with respect to
profiling modern LLM inference frameworks that combine several

optimizations in order to understand what parameters matter, how
to fine-tune them, and how to improve important building blocks
such as KV caching. To this end, we propose a series of design
principles and a corresponding implementation as profiling tool
that enables scalable instrumentation of inference frameworks to
collect fine-grain metadata and performance metrics needed to
characterize the behavior of the inferences under concurrency.

Using this tool, we instrumented vLLM, a popular inference
framework. We characterize in-depth the behavior of vLLM
under concurrency for a diversity of scenarios that combine
several workloads, different model architectures, and several
optimizations: different batching strategies (prefill first, mixed
prefill and decode, chunked prefill) and different GPU KV cache
eviction policies: swap to host memory, drop and recompute.

The results show interesting trade-offs that relate to load
balancing of forward passes to avoid stragglers through chunking
vs. overhead running multiple forward passes and sub-optimal
implementation of attention computations when only a partial
view is available due to chunking, flexibility of batching due
to limited penalty of under-utilizing the context window during
forward passes, differences in utilization of the context window
when prefills dominate over decodes and the other way around,
significant KV cache idle durations when accesses are missing
or happen occasionally, swapping vs. recomputations.

In future work, we will extend our instrumentation to seam-
lessly integrate with lower-level tools such as NVIDIA NSight
Systems. Additionally, we will leverage our findings to co-design
novel batching and multi-level KV cache strategies that adaptively
optimize the highlighted trade-offs. Finally, we didn’t explore
an important dimension: the use of multiple GPUs both within
the same compute node (tensor parallel) and across compute
nodes (data parallel). This presents opportunities to study new
distributed patterns and corresponding optimization strategies.
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