
Stimulus: Accelerate Data Management for
Scientific AI applications in HPC

Hariharan Devarajan1, Anthony Kougkas1, Huihuo Zheng2, Venkatram Vishwanath2, and Xian-He Sun1

hdevarajan@hawk.iit.edu, akougkas@iit.edu, huihuo.zheng@anl.gov, venkat@anl.gov, sun@iit.edu
1Illinois Institute of Technology, Chicago

2Argonne National Laboratory

Abstract—Modern scientific workflows couple simulations with
AI-powered analytics by frequently exchanging data to accelerate
time-to-science to reduce the complexity of the simulation planes.
However, this data exchange is limited in performance and
portability due to a lack of support for scientific data formats
in AI frameworks. We need a cohesive mechanism to effectively
integrate at scale complex scientific data formats such as HDF5,
PnetCDF, ADIOS2, GNCF, and Silo into popular AI frameworks
such as TensorFlow, PyTorch, and Caffe. To this end, we designed
Stimulus, a data management library for ingesting scientific
data effectively into the popular AI frameworks. We utilize the
StimOps functions along with StimPack abstraction to enable the
integration of scientific data formats with any AI framework. The
evaluations show that Stimulus outperforms several large-scale
applications with different use-cases such as Cosmic Tagger (con-
suming HDF5 dataset in PyTorch), Distributed FFN (consuming
HDF5 dataset in TensorFlow), and CosmoFlow (converting
HDF5 into TFRecord and then consuming that in TensorFlow)
by 5.3×, 2.9×, and 1.9× respectively with ideal I/O scalability up
to 768 GPUs on the Summit supercomputer. Through Stimulus,
we can portably extend existing popular AI frameworks to
cohesively support any complex scientific data format and
efficiently scale the applications on large-scale supercomputers.

Index Terms—scientific data format, HDF5, TensorFlow, Ten-
sor, Operators, Decoupled I/O, transformation, integration, man-
agement, I/O acceleration, HPC

I. INTRODUCTION

Artificial Intelligence (AI) is being applied to solve complex

problems in a wide variety of applications. These applications

range from image recognition [1], natural language process-

ing [2], autonomous driving [3], and scientific domains such as

cosmology [4], materials science [5], and biology [6]. Appli-

cation developers in scientific domains utilize AI frameworks

(e.g., TensorFlow [7], PyTorch [8], and Caffe [9]) on HPC sys-

tems to solve a common class of problems such as clustering

data based on features and numerical regression optimizations.

These scientific applications are coupled with traditional sci-

entific computing simulations [10] (also known as inner-loop

modeling). Traditional scientific computing enhanced with AI-

based knowledge acceleration has the potential to increase

the performance and throughput of inner-loop modeling [11].

Efficient data coupling requires cohesive data exchange be-

tween scientific simulations and AI applications to drive the

advancement of scientific discoveries in many domains.
Cohesive data exchange between science and AI requires

interaction between the scientific data formats utilized

by traditional simulations and AI frameworks. Traditional

simulations produce petabytes of data in scientific data formats

such as HDF5 [12], PnetCDF [13], ADIOS [14], Silo [15], and

GNCF [16]. On the contrary, AI frameworks are designed and

optimized to utilize custom data formats such as TFRecord [7],

PyTorch-Dataset [8], and LMDB format [9]. To achieve effi-

cient data exchange [17] there are three possible approaches.

Firstly, simulations can produce data in AI formats. This is

undesirable as legacy simulations are fine-tuned for scientific

formats [18]. Secondly, scientific data can be converted into

AI formats. This approach is highly cost [19] and space [20]

prohibitive as petabytes of data have to be converted and

stored on the global file system. Lastly, AI frameworks can be

made compatible with scientific data formats. This approach

seems promising as it could enable an efficient cohesive

integration of scientific data formats within AI frameworks.

Cohesive integration of scientific data formats into popular

AI frameworks should consider performance as well as porta-

bility. Most application developers manually load data using

the native data APIs [21], [22] with no control over operation

pipelining, leading to non-scalable and inefficient I/O. To im-

prove this, scientists performed this integration by consuming

scientific data as a part of the graph execution of the AI frame-

work [23] at the API level. This approach lacks performance
because functions are defined in python as a combination of

existing operators at the API level. It prohibits the application

developer from having fine-grained control over the pipeline,

resulting in multiple data copies and missed optimization

opportunities such as aggregation and caching [23], [24]. The

approach also lacks portability as these implementations are

tightly coupled with the target scientific data format and AI

framework. This strong coupling is undesirable as application

developers often implement their models on different AI

frameworks to target specialized AI hardware [25] such as

Cerebras, GraphCore, Groq, etc. Many of these novel hardware

support only certain frameworks. Additionally, scientific data

representation is not compatible with the AI framework’s

tensor. For every data format and AI framework combination,

a strongly coupled approach would have to re-implement com-

mon functionalities and optimizations leading to duplication of

efforts across frameworks, more points of failure or errors, and

lower quality of service. Therefore, it is necessary to have a

new portable and performant approach to integrate scientific

data formats within popular AI frameworks.

109

2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00020

We designed Stimulus, a data management framework for

cohesively integrating scientific data formats within an AI

framework to address the portability and performance chal-

lenge that exists in current HPC-AI workflows. To achieve

these goals, we introduce two novel concepts: the StimPack ab-

straction and StimOps functions. For portability, StimPack uni-

fies several data formats under a single data abstraction and Sti-
mOps makes StimPack compatible with any popular AI frame-

work. For performance, StimPack utilizes scientific data format

APIs which efficiently decouple I/O from sample processing

whereas StimOps manages the pipelining and parallelism of

the input pipeline to maximize I/O performance. Additionally,

StimPack functions are compatible with existing tensor oper-

ators for scientific data input pipelines (e.g., batch) as well

as existing optimizations for maximizing performance, such

as prefetching and caching. The utilization of StimPack ab-

straction and StimOps functions enables Stimulus to cohesively

integrate several scientific data formats with many popular AI

frameworks. We use HDF5 with TensorFlow and PyTorch on

the Summit supercomputer as our flagship use-case as these

choices of library and framework are popular in HPC environ-

ments [26], [27]. The contributions of this work include:

1) Design of the Stimulus architecture with a generalized in-

put pipeline for scientific data formats that are compatible

with production AI frameworks (Section III).

2) Design of StimPack abstractions to efficiently represent

popular scientific data formats within AI frameworks

(Section III-E).

3) Design and implementation of tensor operators for Stimu-

lus’ input pipeline to enable efficient data ingestion from

scientific data formats (Subsection III-D).

4) Illustration of the performance impact of cohesive and

data-centric integration of scientific formats in AI frame-

works on the Summit supercomputer (Section IV).

II. BACKGROUND AND MOTIVATION

AI has revolutionized scientific computing by solving sev-

eral complex problems in the domain of physics [28], cos-

mology [19], materials science [5], meteorology [29], and

biology [22]. These applications utilize popular AI frameworks

such as TensorFlow and PyTorch and consume simulation data

stored in the different scientific data formats such as HDF5,

PnetCDF, etc.

In high-energy physics (HEP), detecting the signal of a new

particle using AI models is a common use-case [30]. The

application uses Caffe with 15 TB of structured scientific data

in HDF5 data format with dozens of channels/variables and

6.4M events. Similarly, in meteorology, AI models are used

to understand extreme weather life cycles and predict their

future trends [31], [32]. These applications are implemented in

TensorFlow and consume terabyte datasets stored in HDF5 and

PnetCDF data format. Additionally, in the field of cosmology,

scientists utilize AI to determine the distribution of matter

in the universe [21], [33]. The applications utilize PyTorch

and TensorFlow as their AI framework and consume terabytes

of datasets stored in sparse HDF5 data format. Finally, in

the field of 3D image segmentation, AI models are utilized

to robustly segment images with an unknown and variable

number of objects and highly variable object sizes [22]. In this

application, the AI model uses novel flood-filling networks

implemented in TensorFlow and consumes a sparse HDF5

dataset with separate metadata and data files.

A. Motivation

The above examples demonstrate that popular AI frame-

works such as TensorFlow and PyTorch are extensively used to

build science models. Additionally, these models consume data

in scientific formats such as HDF5, PnetCDF, silo, ADIOS,

and GNCF because these datasets are generated by scientific

simulations that have been fine-tuned to efficiently generate

data into these formats.

1) Need for Portability: The diversity of using popular

cloud AI frameworks in HPC systems to consume various

scientific data formats motivates us to build a portable solution

that applies to any popular AI framework and any scientific

data format. This is even more critical from the user per-

spective as many novel hardware (e.g., Cerebras, GraphCore,

and Groq) are supported by only certain frameworks. For

instance, the Cerebras AI chip compresses the compute power

of 850,000 AI-optimized cores onto a single chip and achieves

4.3× acceleration [25]. This chip supports APIs only as an

extension of TensorFlow for integrating the chip with applica-

tions. Another example is the Goya Inference Processor, which

is based on the scalable architecture of Habana’s proprietary

Tensor-Processing Core (TPC) and includes a cluster of eight

programmable cores [34]. This chip supports APIs as an

extension of PyTorch framework. In these examples, when

users port their models to different AI hardware, having a

portable data management library across different frameworks

reduces redundant and error-prone development efforts.

2) Need for Performance: Scientific data format currently is

consumed using custom tightly coupled solutions that integrate

a particular dataset into a specific AI framework. We tested

the applications on the Summit supercomputer at ORNL [35]

and scaled it from 32 nodes to 128 nodes with 6 processes

(one for each GPU) per node with a 2 TB dataset (strong

scaling). Also, the “Optimized I/O” is calculated based on

manual decoupled I/O, overlapping of I/O and compute, and

increased I/O parallelism through multi-threading within each

process for all use-cases.

Use-case 1: TensorFlow with native HDF5 APIs. Distributed

Flood Filling Networks (DFFN) [22] are built inTensorFlow

and consume HDF5 files using manual data ingestion and

h5py APIs. In DFFN, the dataset is read by the application

using the HDF5 library (as TF does not natively support

the HDF5 data format). Next, the data is processed using

Python functions provided by TF and then fed to the training

phase using the tensor representation. The percentage of I/O

to total time increases (from 26% to 43% for the largest

scale) as the application scale increases, moving the I/O cost

of the application farther away from the optimal I/O time

(Figure 1(a)). Through optimal I/O, we can achieve a speedup

110

(a) Distributed FFN (TensorFlow). (b) Cosmic Tagger (PyTorch).

Fig. 1. Potential I/O improvement through cohesive integration in existing
applications of up to 2.9x-3.4x when we ideally parallelize, overlap, and
maximize PFS bandwidth.

of 2.9x on the largest scale. This is because each process

in the application currently performs I/O and processes data

using a single thread without any I/O optimization such as

parallelism, pipelining, or prefetching since the HDF5 calls

and AI-model computations are not executed as part of the

AI framework’s graph execution.

Use-case 2: PyTorch with data loader using HDF5 APIs.
Cosmic Tagging with UNet [21] is implemented in PyTorch

and consumes HDF5 dataset using the DataLoader frame-

work, which implements the input pipeline at the API level.

The percentage of I/O over overall time increases (up to 90%

for the largest scale) with application scale, moving the I/O

cost of the application farther away from the optimal I/O

time (Figure 1(b)). HDF5 I/O using DataLoader framework

in PyTorch is performed per sample. As the image samples

are small, the application cannot extract maximum bandwidth

from GPFS. Instead, the “Optimized I/O” decouples and

parallelizes the I/O workers to achieve optimal PFS bandwidth,

which increases I/O bandwidth by 3.4×. Additionally, the inte-

gration at API level (using DataLoader) is not portable to Ten-

sorFlow or Caffe as they do not utilize DataLoader abstraction.

Currently scientific AI applications tightly couple data

ingestion with the AI framework, which impacts both

performance and portability (as observed from these use-

cases). This existing situation motivates a move towards a

more decoupled and generic solution that could cohesively

integrate scientific data formats with popular AI frameworks.

III. STIMULUS

Stimulus is a data management library for scientific AI

applications in High-Performance Computing (HPC) environ-

ments. The primary goals of Stimulus are to achieve a portable

and performant integration of scientific data formats within

popular AI frameworks. We introduce two novel concepts

in Stimulus to achieve these goals, namely, the StimPack
abstraction and StimOps functions. The StimPack abstraction

unifies several scientific data formats under a simple interface

that masks the implementation complexity of individual data

formats. On the other hand, the StimOps functions provide

a generic data ingestion pipeline that can be executed by

any tensor-operator-based framework such as TensorFlow,

PyTorch, or Caffe. Stimulus achieves portability using these

two ideas, as the StimPack abstraction unifies several scientific

Stimulus Library

Scientific
Applications

Cosmic
Tagger

DFFN

AI Framework
Tensor

Infrastructure

PyTorch
Operators

Stimulus
Operators

(Tensorflow
and PyTorch
Wrappers)

TensorFlow
Operators

StimOps

AI Framework
API

PyTorch API TensorFlow
APIStimulus API

StimPack

HDF5 pNetCDF silo GNCF ADIOS

AI Runtime

Utilizes

Builds graph

Depends on

Executes

Fig. 2. Stimulus integrates with the existing AI framework at an API level and
tensor infrastructure level. All of the data management features provided by
StimOps and StimPack are packed into the Stimulus library. The Stimulus API
and the Stimulus Operators act as a facade layer to invoke routines from the
Stimulus library. The StimOps are executed as a part of the overall execution
graph of the AI workflow.

data formats under a single interface and the StimOps functions

make the input pipeline for scientific data generic across

any popular AI framework. Additionally, Stimulus achieves

performance using the StimPack abstraction, as the implemen-

tation includes efficient usage of scientific data format APIs

and optimization flags to maximize I/O performance. Also, the

StimOps functions enable fine-grained control over the input

pipeline at a lower-level (i.e., C++ implementations), enabling

I/O optimizations such as decoupling of I/O and sample

processing, operation parallelism, and operation pipelining.

A. Architecture

To achieve the portability and performance objectives, Stim-

ulus defines StimOps functions and the StimPack abstraction to

build a solution that efficiently integrates several scientific data

formats with popular AI frameworks. Stimulus integrates with

existing AI frameworks at an API level and internal tensor

infrastructure level to seamlessly integrate existing toolkits

in a typical HPC-AI software stack. To provide modularity,

all the Stimulus functionality (i.e., StimPack abstractions and

StimOps functions) are packed into the Stimulus Library (i.e.,

a .so file), which is used as a system dependency by the AI

frameworks. This means we provide hooks within the existing

AI framework infrastructure to act as a skeleton to call the

Stimulus library to perform data management for scientific AI

applications. This architecture can be presented with software

interaction and examples of scientific AI applications

(Figure 2). The Cosmic Tagger application (blue line in the

figure), which utilizes PyTorch APIs to build the input pipeline

and construct the AI model, consumes the HDF5 dataset

using the Stimulus APIs. The Stimulus APIs define the input

pipeline as a collection of tensors implemented at the custom

tensor infrastructure level. Using this mechanism, the input

pipeline defined by Stimulus is inserted into the execution

graph of the AI framework and therefore is run cohesively by

the underlying runtime. The Stimulus Operators defined at the

infrastructure level act as a facade layer to invoke StimOps

111

 1. import stimulus.tensorflow as st
 2. import tensorflow as tf
 3. # Load HDF5 Files with Stimulus
 4. files = [("/pfs/images_1_2.h5",image1_ds, label1_ds, ("FIXED", 4096)),
 ("/pfs/images_2_2.h5",image2_ds, label2_ds, ("FIXED", 8192))]
 5. ds = tf.Dataset.from_slices(files)
 7. ds = ds.interleave(lambda x: st.HDF5(x,
 transfer_size=1048576,
 read_threads=4),
 cycle_length=4, block_length=16)
 ...
 16. for image_batch, label_batch in ds:
 17. train(image_batch, label_batch)

(a) Tensorflow Example with HDF5

 1. import stimulus.pytorch as st
 2. import torch
 3. from torch.utils.data import DataLoader
 4. # Load ADIOS2 File with Stimulus
 5. dataset = st.ADIOS2("/pfs/images_1_2.bp",image1_var, label1_var, ("FIXED", 4096))
 6. data_loader = DataLoader(dataset, batch_size=4, shuffle=True)
 7. for imgs, labels in data_loader:
 8. train(image_batch, label_batch)

(b) PyTorch Example with ADIOS2

Fig. 3. Stimulus API integrated with TensorFlow and PyTorch. The functions
are compatible with dataset APIs for both frameworks and can be used with
other input pipeline operators such as batch, filter, and shuffle.

functions from the Stimulus Library (4th layer in the figure).

The StimOps utilize the StimPack abstraction to access the

requested data format to perform I/O and generate samples

during runtime. The Stimulus operators (at the 3rd layer) also

manage parallelism and pipelining details to maximize the

performance of the graph execution within the AI runtime.

A similar flow is presented for TensorFlow applications

(e.g., DFFN green arrows in the figure). Essentially, through

Stimulus, the AI framework is enhanced with input pipeline

operators and scientific data format implementations while

maintaining portability and performance.

B. Stimulus API Integration

The Stimulus API (Figure 2 level 2 available at

https://github.com/scs-lab/stimulus) is developed in Python

as most scientific AI applications built with TensorFlow,

PyTorch, and Caffe are implemented using the Python

API. The Stimulus API is designed as an independent

Python module installed as a typical python package using

pip or setup.py file. The users can install stimulus for a

specific AI framework or all AI frameworks based on the

application. Once installed, Stimulus can be imported for a

particular framework as import stimulus .<framework> as st
(Figure 3). Once imported in the application, we could

utilize the data format classes (namely, HDF5, NC, Silo,

GNCG, and ADIOS2) to define the input sources. Each

of these classes require a tuple as input containing

the filename, dataset_name, label_name, and

sample_boundaries. These attributes are defined by the

StimPack abstraction described later. Additionally, Stimulus

API takes user inputs of I/O transfer size and read parallelism

per process. The I/O transfer size determines the granularity

of I/O performed by the Scientific Format I/O Operator. In

contrast, the read parallelism parameter determines the number

of parallel threads used to perform I/O. In our experience, the

transfer size should be equal to the parallel file system’s stripe

size (e.g., Lustre), and the read parallelism threads should be

equal to number of cores
number of processes (per node) to maximize CPU

utilization and I/O performance. Stimulus’ APIs can be used

by the user with existing input pipeline operators such as

batch, shuffle, iterators, etc. (Figure 3). As demonstrated in

the examples, it is extremely intuitive and easy to integrate

scientific datasets and AI frameworks using Stimulus APIs.

C. Stimulus Operators Facade

The Stimulus Operators (Figure 2 level 3) act as a facade to

invoke implementations of StimOps functions. The operators

utilize the custom tensor infrastructure from TensorFlow [36],

PyTorch [37], and Caffe2 [38]. The facade contains an AI

framework-specific interface to define custom operators for the

input pipeline. The implementation of the interface is provided

by the StimOps functions using the Proxy design pattern.

Using these software engineering techniques, we can separate

the definitions and declarations of the input pipeline and

enable code reuse and modularization. Each facade for an AI

framework has interfaces for three operators: Scientific Format

I/O Operator, Input Sample Creator, and Sample Converter.

These operators are implemented as a part of Stimulus Library

and will be discussed in the next subsection.

D. StimOps functions

The input pipeline is defined at the Stimulus API layer but

implemented within the StimOps functions. The input pipeline

is defined as a three-operator graph: Scientific Format I/O

Operator, Input Sample Creator, and Sample Converter. The

Scientific Format I/O Operator defines a routine to read data

from different scientific formats. Here, the operator utilizes

the StimOps functions from the Stimulus library, which uses

the StimPack abstraction to perform I/O. The Input Sample
Creator converts the data read from the scientific format (in

the form of bytes) into samples (in a high-dimensional matrix).

Finally, the Sample Converter converts the memory represen-

tation of a scientific data format into a tensor representation.

This operator enables the integration of Stimulus operators and

existing AI framework operators. The purpose of using three

operators is to enable pipelining and parallelism. In general,

for a given I/O request from the data source, the operators are

executed sequentially. However, these reads can be pipelined

with other reads for creating a deep input pipeline for AI

models. Additionally, reads from different parts of the file are

parallelized to maximize I/O bandwidth.

1) Portability: The StimOps functions are agnostic of AI

framework-specific implementations. We utilize the Stimulus

Operators Facade (discussed in previous Subsection III-C)

to interface them to the StimOps functions. The StimOps

operator is defined as a generic template which is specialized

at compile time to any tensor-based AI framework (Figure 4).

The StimOps class takes a TENSOR template parameter,

representing the data communication mechanism in AI

frameworks. This TENSOR template parameter is set to

tensorflow::Tensor or torch::Tensor by the Stimulus Operators

Facade at compile time for TensorFlow and PyTorch. There are

three simple steps for each operator: a) convert tensor objects
to C++: Tensor infrastructure communicates data as tensor

objects. We need to deserialize them into structures to utilize

112

template<typename TENSOR>
class StimOps{
 TENSOR ScientificIOOperator(TENSOR dataset_t, TENSOR options_t) {
 // convert tensor into C++ objects as args
 std::tuple args = extract(IO_OPERATOR, options_t);
 // call stimulus library
 stimulus::Data d = ScientificIOOperatorFactory.GetOp(args).execute();
 // pack output into tensor
 torch::Tensor output = convert(d);
 return output
 }
 TENSOR InputSampleCreator(TENSOR dataset_t, TENSOR options_t) {
 // convert tensor into C++ objects as args
 std::tuple args = extract(SAMPLE_CREATOR, options_t);
 // call stimulus library
 auto operator = InputSampleCreatorFactory.GetOp(args).execute();
 // pack output into tensor
 torch::Tensor output = convert(d);
 return output
 }
 TENSOR SampleConverter(TENSOR dataset_t, TENSOR options_t) {
 // convert tensor into C++ objects as args
 std::tuple args = extract(SAMPLE_CONVERTER, options_t);
 // call stimulus library
 torch::Tensor output = SampleConverterFactory.GetOp(args).execute();
 return output
 }
}

Fig. 4. Pseudocode of StimOps Implementation for any tensor-based AI
framework. It utilizes the template pattern and are specialized based on
invocation from the Stimulus Operators Facade.

them within Stimulus. To incur a low overhead of serializa-

tion/deserialization, we utilize byte array serialization of the

structures. This is extremely fast, and no additional memory is

required. b) Invoke the operations within the Stimulus library:

Here, we utilize the factory pattern to select the appropriate

data format implementation of the operator from the StimPack
abstraction. Finally, c) repack the output into tensor objects:

This is done using byte array serialization. Using these three

generic steps, we can define the StimOps functions for any

tensor-based AI framework (Figure 4). Finally, converting

scientific data into tensor objects using Sample Converter

enables users to combine Stimulus with existing input pipeline

operations such as batch, filter, transformations, and iterations.

2) Performance: Splitting the input pipeline into three

operators has four performance benefits. First, the operators of

the pipeline are independent of each data element in the file.

This enables Stimulus to execute a deep pipeline within the

AI runtime to ensure the data ingestion rate matches the GPU

computation. Second, the operators acting on different data

elements can be efficiently parallelized based on CPU-core

availability. Third, the operators decouple I/O from sample

creations for the input pipeline. The read granularity of data

from data sources such as PFS, Burst Buffers, or node-local

devices does not match the sample size, which is often small.

This enables Stimulus to extract maximum performance from

the underlying data source. Finally, the converter operator

transforms the scientific data into Tensor objects. This enables

users to enhance the Stimulus pipeline with existing optimiza-

tions within AI frameworks. For instance, we have combined

Stimulus with data optimizations such as prefetching and

caching from TensorFlow data pipeline to further optimize the

input pipeline without reimplementing these routines within

Stimulus. This shows the power of a modular and decoupled

input pipeline for scientific data formats.

E. StimPack Abstraction

The StimPack abstraction is designed in low-level C++ lan-

guage. The StimPack abstraction represents popular scientific

data formats such as HDF5, PnetCDF, ADIOS2, GNCF, and

Silo. The abstraction consists of an interface (i.e., C++ abstract

class) with predefined methods and attributes common across

all scientific data formats. The StimPack Dataset is a

common representation for any scientific format. Based on our

investigation, all scientific formats utilize a structured multi-

dimensional representation to store data. For example, we

have Dataset for HDF5 and PnetCDF, Attributes in ADIOS2,

and n-dimensional Mesh in Silo. The StimPack Dataset
consists of four fields, name: represents filename or object

name, field name and label name: represents dataset name,

attribute name, or mesh name corresponding to where data

and label is stored respectively, and finally sample boundary:

a map of all boundaries of the sample. Stimulus advocates to

have a common API (as proposed by many libraries such as

Keras [39]) to build I/O optimizations in a portable fashion.

In most cases, the predefined classes should be sufficient

to achieve their intended purpose but application developers

can further extend the StimPack abstraction by building a

custom interface.

Every scientific data format within StimPack contains three

functions: ScientificIOOperator, InputSampleCreator, and the

SampleConverter. The ScientificIOOperator function performs

the I/O from the data source for each data format based on the

provided transfer size using native scientific data format APIs.

The InputSampleCreator function splits the binary form of the

data into individual samples. The operator requires the user’s

knowledge of the sample’s boundaries within the dataset to

extract the samples. Users can define these boundaries in two

modes: FIXED (i.e., each sample is of fixed size given by the

user) or VARIABLE (i.e., the user provides a sample index

map and its range within the dataset). The VARIABLE sample

index enables users to set their custom boundaries to define

and construct a sample. The user sets this information during

the definition of the input pipeline (example in Figure 3

Line 4). Finally, the SampleConverter function transforms

the scientific data format’s data sample representation into a

tensor compatible format. The in-memory representation of

a scientific data sample depends on the format. For instance,

HDF5 dataset samples are represented as a multi-dimensional

array with a start, end, and stride sizes; ADIOS2 samples

are represented as a single-dimensional array in row-major

format; Silo samples are represented in a custom data structure

such as DBquadmesh with an API to extract information.

This demands special care when we need to convert a sample

into a tensor object. We need to utilize scientific data format

APIs to achieve this transformation. The steps to achieve this

conversion are given as follows. First, the Sample Converter

needs to convert custom samples into a standardized multi-

dimensional array in memory. Then, we can convert the

in-memory array into a tensor object using AI framework

operators such as convert_to_tensor in TensorFlow,

torch.tensor in PyTorch, and workspace.FeedBlob
in Caffe. This process converts existing in-memory data into

a tensor object using the same data pointers in C++. The

approach achieves a zero-copy conversion from in-memory

113

// HDF5 implementation
template<typename TENSOR>
class HDF5: public StimPack<TENSOR>{
 stimulus::Data ScientificIOOperator(stimulus::dataset dataset_t){
 /* allocate arrays for hyperslab */
 ...
 hid_t file = H5Fopen(dataset_t.name_.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT);
 hid_t dataset = H5Dopen(file, dataset_t.field_name.c_str(), H5P_DEFAULT);
 /* find rank, element_size, and elements_per_dim from dataset */
 ...
 size_t num_elements = transfer_size_ / (element_size * elements_per_dim);
 size_t start = element_index_ * num_elements;
 /* define memory and file hyperslabs */
 ...
 Data return_data;
 /* Read data from file hyperslab into memory hyperslab into the
 allocated return_data.buffer_ */
 status = H5Dread(dataset, H5T_NATIVE_INT, memspace, dataspace, H5P_DEFAULT,
 return_data.buffer_);
 /* Close HDF5 datastructure and set booking values */
 return return_data;
 }
 stimulus::Data InputSampleCreator(stimulus::Data data_t,
 stimulus::dataset dataset_t) {
 Data sample;
 /* for each sample calculate sample offset and size. This is linear
 calculation for FIXED and iteration over map for VARIABLE */
 for(auto sb: sample_boundaries){
 sample.buffer_ = malloc(sb.size);
 sample.size_ = sb.size;
 memcpy(sample.buffer_, (char*)data_t.buffer_ + sb.offset, sb.size);
 co_yield sample;
 }
 co_return sample;
 }
 TENSOR SampleConverter(stimulus::Data data_t) {
 /* allocate output tensor based on TENSOR APIs */
 auto output_flat = output_tensor->flat<int32>();
 if (output_flat.size() > 0)
 memcpy(output_flat.data(), data_t.buffer_,data_t.size_);
 return output_tensor;
 }
}

(a) HDF5 Implementation of StimPack

// ADIOS2 implementation
template<typename TENSOR>
class ADIOS2: public StimPack<TENSOR>{
 stimulus::Data ScientificIOOperator(stimulus::dataset dataset_t){
 auto bpReader = bpIO.Open(dataset_t.name_, adios2::Mode::Read);
 /* calculate read boundaries and element size from variable*/
 num_elements = transfer_size/element_size;
 start = source.index * num_elements;
 end = (source.index + 1) * num_elements;
 /* select the appropriate variable into bpData*/
 Data return_data;
 bpReader.Get(bpData, return_data.buffer_);
 /* Close ADIOS datastructures and set booking values */
 return return_data;
 }
 ...
}

(b) ADIOS2 Implementation of StimPack

Fig. 5. Implementation of StimPack abstraction for HDF5 and ADIOS2.
The APIs are utilized to efficiently read data from the source and convert
in-memory representations into tensor objects. We utilize high-performance
co-routine calls to optimize control flow for the AI framework’s runtime.

data format representation to tensor representation.

1) Portability: The StimPack abstraction described above

is the abstract class that is implemented by scientific data

formats. We have defined a generic function as a template

that provides hooks for implementing data format-specific

operations. For data formats with multiple datasets or multi-

variate datasets within the file, the different data types/datasets

can be chained together by defining different data sources at

the Stimulus API level with the same filename but different

dataset/attribute names. The StimPack abstraction represents

these structured scientific formats accurately. We present the

implementation details for HDF5 and ADIOS2 in Figure 5.

The critical thing to note is that we build routines to opti-

mally consume data from scientific formats and re-use this

implementation across any AI framework. Other data formats

are implemented as a part of our repository.

2) Performance: StimPack alleviates for users the burden

of building their data ingestion pipeline from scratch. Users

define their dataset and optimization parameters (e.g., transfer

size, read parallelism, etc.) based on the underlying HPC

system, and Stimulus takes care of efficient data ingestion from

scientific data. Users do not worry about complicated concepts

such as hyperslab, chunking, co-routines, compression, or

prefetching. Instead, they define their jobs at a high level,

and the system optimizes the input pipeline transparently.

The read within the ScientificIOOperator function uses data

sharding to enable data parallelism for AI frameworks [40].

Each thread reads a part of the overall data in the AI

application based on the size of the data. Additionally, if the

transfer size does not match the sample boundaries, we read

the largest number of samples that can fit the given transfer

size. Finally, Stimulus also identifies special cases such as

small files, irregular sample boundaries, etc., and optimizes

the system through the StimPack abstraction. For instance,

for small HDF5 files, Stimulus uses the H5LT library to

load the HDF5 file into memory and remove the data access

penalty from the PFS. The standardization of the interface

and transparent optimizations enable users to get performance

from scientific data format in a portable manner.

IV. EVALUATIONS

A. Methodology

To evaluate the effectiveness of Stimulus’ design, we first

showcase the internal performance of StimOps functions

and StimPack abstractions. We then test the end-to-end

performance for AI applications such as Cosmic Tagging,

Cosmoflow, and Distributed Flood Filling Networks (DFFN)

to showcase Stimulus’ overall impact in HPC environments.

We run these tests five times, and the variance in the data is

noted in the figures.

1) Testbed: The Summit supercomputer [35] consists of

4608 nodes, each equipped with two IBM Power 9 CPUs

(total 44 cores) and 6 NVIDIA Volta GPUs (V100) with 16

GB HBM2 memory. Each Power 9 CPU is connected to 3

Volta GPUs using NVIDIA high-speed interconnect NVLink,

capable of 300 GB/s bi-directional bandwidth. Each node has

512 GB of system memory. Dual rail EDR Infiniband cards

connect all the nodes using a non-blocking fat-tree topology.

The nodes can access a POSIX-based IBM Spectrum Scale

parallel file system with a current capacity of 3 PB and an

approximate maximum speed of 30 GB/s. We utilized 128

computer nodes (i.e., 768 Volta GPUs) for the largest scale in

our evaluations.

2) Software Used: We used the TensorFlow profiler to

measure the benchmark’s performance. Additionally, we used

the VaniDL analysis tool [41], which provides high-level

aggregated I/O insights into a traced application. We used

TensorFlow 2.1.0 and PyTorch 1.7 with Horovod 0.19.5 for

114

(a) Anatomy. (b) Performance.

Fig. 6. Input Pipeline: a) Most time is spent in I/O, and operators execute with
pipelining and parallelism. b) Throughput of the input pipeline in a single node
with 64 threads is 43M ops/s for Input Sample Creator and Sample Converter
and 5M ops/s for Scientific Format I/O Operator.

distributed training. Finally, we used NumPy version 1.19.1,

h5py version 2.10.0, and mpi4py version 3.0.3.

3) Applications: We use a collection of synthetic

benchmarks to showcase different performance metrics on

the designed components. We use the DLIO benchmark [42],

a representative of scientific deep learning applications in

HPC systems. Additionally, we utilize three scientific AI

application kernels: Neutrino and Cosmic Tagging with

UNet [21], Distributed Flood Filling Networks (DFFN) [22],

and Cosmoflow [19] using DLIO Benchmark Suite [42].

B. Scientific Format Input Pipeline

To showcase the performance, we first do a break-down of

all operations supported within the Input Pipeline and then

measure their end-to-end performance for different use-cases

(Figure 6 and 7).

1) Anatomy of Scientific Format Input Pipeline: Scien-

tific Format Input Pipeline combines StimOps functions and

TensorFlow’s input pipeline operators defined by the user.

Therefore, it is crucial to measure its performance across

various APIs supported in this input pipeline. To test this, we

build a simple input pipeline with a dataset of 1024 samples,

each of size 1 MB. We build an input pipeline similar to

Figure 3. We run the synthetic workload with a batch size of

64 samples over 16 steps and 1000 epochs. We calculate the

time using Tensorflow Profiler for each operation and calculate

the average time.The HDF5Dataset marked in Figure 6(a)

is the high-level API provided by Stimulus, which con-

tains the StimOps functions. The operations HDF5Dataset:I/O
and prefetch are I/O operations, and hence they have the max-

imum cost. In this case, they perform almost the same number

of I/O operations. The cost of data processing operations, such

as HDF5Dataset:Sample, HDF5Dataset:Converter, interleave,

map, filter, batch, and shuffle, depend on the operation type.

These operations are performed on data already in-memory

and hence are memory-bound in performance. Finally, gener-

ating the Iterator is an in-memory operation of existing data to

the training loop and therefore has a relatively low cost similar

to a batch operation. This result shows a general distribution

of the scientific format input pipeline cost in AI applications.

2) Performance of StimOps functions: Scientific Format

Input Pipeline should have a high-performance throughput

Fig. 7. Performance of StimPack data formats for TensorFlow and PyTorch
is comparable to an IOR baseline on the PFS. Stimulus can achieve up to
98% of the PFS bandwidth.
for each of the StimOps functions. The throughput of these

functions depends upon the availability of threads within the

execution pipeline. To evaluate their performance, we execute

each Stimulus operator with different threads over 10000

operations in a single node. We calculate each operation’s

throughput within our system in operations per second. The

I/O Operator is bound by the GPFS file system’s performance,

whereas the node’s memory performance bounds the sample

Creator and Converter (Figure 6(b)). Therefore, we see a

significant throughput difference between the I/O operator and

memory operators. Additionally, each operator’s throughput

increases as we have more execution threads since these

operations can occur in-parallel and will extract higher

performance from the system. Generally, the input pipeline

graph is executed over CPU cores and the AI model over

GPUs. Therefore, the results show that the implementation

efficiently utilizes multi-core CPUs.

3) Performance of StimPack abstraction: The performance

of our StimPack abstractions for various data formats is crucial

for maximizing the performance of the AI framework. To

evaluate their performance, we execute the input pipeline of

reading a 32GB dataset with a transfer size of 1MB, with each

dataset containing samples of size 128 KB. We perform this

test across HDF5 (H), ADIOS2 (A), Silo (S), PnetCDF (NC),

and GNCF (GN) with TensorFlow and PyTorch framework

on 32 nodes. For each data format, we calculate the extracted

bandwidth from the PFS. As a baseline, we performed 32GB

reads using a transfer size of 1MB from the PFS using the IOR

benchmark and observed the maximum read bandwidth of 60

GB/s. The StimPack test shows that StimPack implementation

of scientific data formats achieves an average bandwidth of

57.60 GB/s for both PyTorch and TensorFlow (Figure 6(a)).

The distribution in performance among data formats is an

average of 58.31 and std of 1.65 for TensorFlow and an

average of 56.89 and std of 2.03 for PyTorch. This is due to

the performance difference between the APIs of individual sci-

entific data formats. Additionally, we observe that TensorFlow

achieves an 8-10% better performance across all the tests than

PyTorch (average over 10 executions). This difference can be

accounted for based on the tensor execution engine difference

between the two AI frameworks. Overall, Stimulus achieves

95-98% of the overall PFS bandwidth achieved by IOR.

C. Impact of Data and Processing Decoupling

Data loading and pre-processing decoupling are essential

in an AI application. This is because samples for AI training

115

(a) Data and Processing Decoupling. (b) Data Prefetching.

Fig. 8. Data Pipeline Optimizations. a) Decoupling optimization can achieve
up to 2× better performance by maximizing GPFS file system bandwidth. b)
Prefetching can mask up to 70% of the overall I/O cost.
are generally in kilobytes, which is extremely inefficient data

access for large parallel file systems such as GPFS. Stimulus

separates data reading (using Scientific Format I/O Operator)

with sample pre-processing (using Input Sample Creator) to

optimize this, as explained in III-D. To test this optimization,

we vary the data reading granularity (i.e., data transfer size)

from 4 KB to 16 MB by step size four. We use a synthetic

benchmark with 32 K samples for each of these cases, each of

size 8 KB, and a batch size of 4 images. The benchmark runs

for 1000 steps, and we measure the total time for performing

I/O and the aggregate bandwidth achieved in each case. We run

the benchmark over 128 nodes with four processes per node.

Figure 8(a) shows the results. On the x-axis, we have varying

transfer sizes; on the y-axis we have time in seconds, and the

y2-axis represents bandwidth in GB/s. We see that until the

transfer size matches the GPFS Stripe size of 1 MB, we have

low bandwidth of 1.2 GB/s. Once we match the transfer size

perfectly, the application can achieve a peak I/O bandwidth

of 2.7 GB/s per node and a total aggregated bandwidth of 240

GB/s (peak I/O bandwidth of Summit). This demonstrates

the importance of matching data access granularity with the

file system to achieve the application’s best performance.
D. Impact of Data Prefetching

As Stimulus follows a cohesive integration within AI frame-

works, it can utilize existing input pipeline optimizations. Data

Prefetching is an essential optimization in TensorFlow for AI

applications [43]. It enables efficient overlapping of I/O with

model computations by reading data beforehand. However, as

shown in many studies [44], [45], [46], data prefetching effi-

ciency depends on the amount of prefetching cache allowed in

the system. We use a synthetic benchmark with a dataset with

32 K samples to test this, each of 8 KB and a batch size of 4

samples. We set the prefetching cache as a percentage of over-

all I/O and measure the I/O performance as time. We observe

that, as we increase the prefetching cache, the I/O performance

increases (Figure 8(b)). This is because more and more data

is already found in the cache’s memory. However, the benefit

reduces for larger prefetching cache size as models are bound

with initial data that needs to be brought in. Specifically, we

see little benefit in performance after 70% of the data is already

cached. Overall, enabling existing prefetching optimization

improves I/O time by 4.42× for 70% prefetching cache.

E. HDF5 AI Application Performance
This section demonstrates the effectiveness of Stimulus to

optimize end-to-end scientific AI applications’ performance.

Specifically, we strong-scale test Neutrino and Cosmic Tag-

ging with UNet (Cosmic Tagger), Distributed Flood Filling

Networks (DFFN), and Cosmoflow. The input pipeline is

executed over the CPU, and the computations occur over

the GPU. In Stimulus, we four-thread I/O and preprocessing

parallelism along with the prefetching optimization.

1) CosmicTagger: Cosmic Tagger is a convolutional

network for separating cosmic, background, and neutrino

in a neutrino dataset. The application is written with the

PyTorch framework and reads a 10 TB dataset stored in

HDF5 format using the DataLoader framework. By default,

every process reads 43008 samples. Each sample contains

three sparse images of size 1280×2048 of average size 40

KB. The application is run for 150 steps and one epoch. At

each step, each process reads and pre-process 32 images.

2) Distributed Flood Filling Networks: DFFN is a

recurrent 3D convolutional network for segmenting neurons

from a brain tissue’s image. The application reads a 4.5 TB

dataset stored in an HDF5 file. Every process reads 18678

samples, each of size 32×32×32. The samples are read by

the application with 4096 fields of view. The application runs

for 400 steps in one epoch with a batch size of 32 images.

3) Cosmoflow: CosmoFlow is a 3D convolutional neural

network model for studying the features in the distribution of

dark matter. The application contains a dataset of size 2 TB

in HDF5 format. This dataset is converted offline into 1024

TFRecord files. The dataset is accessed using TensorFlow’s

tf.data APIs. Each TFRecord file consists of 262,144

samples, each of size 128×128×128×4. The application runs

for four epochs with 256000 steps. The batch size is one. That

is, each process reads one image from the dataset at each step.

4) Analysis: For Cosmic Tagger (Figure 9(a)), the

DataLoader API of PyTorch framework (D in the figure)

results in an exponential increase in I/O cost as the scale

increases (shown in Figure through I/O to Compute Ratio).

This is because the DataLoader framework consumes the file in

the sample granularity. As the samples in the dataset are small

(6KB), the application achieves a low aggregate bandwidth

of 11 GB/s. For Stimulus (S in the figure), data access scales

much better as the I/O performed matches the stripe size of the

PFS (i.e., 1 MB) and therefore extracting higher I/O bandwidth

from the PFS. Additionally, the pipelining operations (due to

the three operators) and I/O parallelism (due to lower-level

of implementation) enables Stimulus to further optimize the

data pipeline by 30%. Through these optimizations, Stimulus

achieves a speedup of 3.4× on I/O as compared to the baseline.

For DFFN (Figure 9(b)), the native HDF5 access (N in

the figure) results in an exponential increase in I/O cost as

the scale increases (shown in Figure through I/O to Compute

Ratio). This is because manually reading data from the HDF5

file does not execute TensorFlow’s execution runtime. This

serializes the input reading, pre-processing, and AI model

computations leading to sub-optimal I/O and data operator

performance. For Stimulus (S in the figure), data access

scales much better than the native HDF5 approach. This is

because Stimulus performs I/O at a bigger granularity (i.e., 1

116

(a) Cosmic Tagger. (b) DFFN. (c) Cosmoflow.

Fig. 9. HDF5 Applications. a) Cosmic Tagger using Stimulus (S) achieves a speedup of 3.4× on I/O and 3× overall compared to the native DataLoader (D)
on the largest scales. b) DFFN using Stimulus achieves a speedup of 2.9× on I/O and 2.29× overall compared to the native h5py APIs (N) on the largest
scales. c) Cosmoflow using Stimulus achieves an overall speed up 1.9× overall compared to converting the dataset (C) on the largest scales while achieving
comparable I/O performance. The speedup in I/O in all cases is achieved but Stimulus via data pipelining, parallel I/O, and larger transfer sizes resulting in
higher PFS bandwidth. Additionally, Stimulus doesn’t require conversion of scientific format into an AI framework-specific format for optimizing I/O.

MB) than the sample (40KB) and hence extracts much higher

bandwidth from the parallel file system (improvement of

2.2×). Additionally, the read and pre-processing parallelism

further improve the I/O performance for the application (total

improvement of 1.3×). Finally, the whole input pipeline is

hidden effectively behind the computation (0.01 seconds per

step) of the previous step (total improvement 2.9×).

For Cosmoflow (Figure 9(c)), the default flow is first to

convert the HDF5 dataset into TFRecord and then consume it

with tf.data APIs (C in the figure). The I/O in the baseline

is extremely efficient with good default reading transfer size

(default 256 KB), data pipelining, and data parallelism.

However, the conversion of the dataset from HDF5 to

TFRecord offsets the benefit of loading data efficiently and

increasing the footprint of data storage (2× more storage).

For Stimulus (S in the figure), data access scales much better

than in the conversion approach. The I/O is slightly better

than TFRecord due to a much more optimal transfer size

of 1MB, which matches the PFS’s stripe size. However,

due to the conversion on the baseline, Stimulus is overall

1.9× faster on the largest scales. In conclusion, Stimulus can

achieve close to native data format’s I/O performance while

not needing any additional preprocessing such as conversion.

V. RELATED WORK

Scientists have proposed several solutions to optimize

scientific data access in modern AI frameworks. These

optimizations stem from the inadequacies suffered by

different AI frameworks in data management. Pumma et

al. proposed LMDBIO-DM [9], an enhanced version of

LMDBIO-LMM [47] that optimizes the I/O access of

Caffe in a distributed-memory environment. However, these

optimizations target specific cloud data formats, such as data in

a distributed database. Essen et al. [48] proposed LBANN by

utilizing node-local storage devices to store datasets and utilize

that to read datasets into AI frameworks. Finally, Caffe [49]

supports an extension to read HDF5 files. As scientific

formats are manually ingested by application developers,

these optimizations cannot extend in general to scientific data

formats efficiently, which is the target of our work. Yosuke

et. al. proposed a methodology [24] to ingest large amounts

of dataset in HDF5 file format by utilizing a new parallel

I/O pipeline within the LBANN infrastructure to enable an

efficient I/O pipeline for scientific data formats. Similarly, Sam

et. al. proposed a novel tournament method [50] for complex

generative models, which minimizes communication and

enables efficient partitioning of large data sets. Additionally,

Kurth et. al. proposed injection of HDF5 dataset reading within

the execution graph of TensorFlow to enable efficient I/O ac-

cess from the PFS [23]. However, these approachs are applied

at the application layer (i.e., specific to DL framework and

data format targeted) which makes them non-portable across

different AI frameworks and unable to maximize performance.

In Stimulus, the data management occurs in a lower-level

(i.e., tensor infrastructure runtime) using StimOps functions

and StimPack abstraction. This makes our solution portable

across multiple scientific data formats and popular AI

frameworks. Additionally, the two novel concepts enable

performance improvement over all existing methodologies.

VI. CONCLUSION

Stimulus demonstrates an efficient input pipeline of

scientific data formats in popular AI frameworks with a

throughput of 5.3M operations per second. Additionally, the

input pipeline extracts 2× to 3.7× better performance from the

GPFS file system by utilizing optimizations such as decoupled

I/O, operation parallelism, and prefetching. Finally, Stimulus

outperforms existing solutions by 2× to 5.3× faster training

performance with up to 768 GPUs on Summit supercomputer

under a diverse set of workloads such as Cosmic Tagger

(using HDF5 with PyTorch), Cosmoflow (using HDF5 with

Tensorflow after conversion to TFRecord), and Distributed

FFN (using HDF5 with TensorFlow). Stimulus efficiently inte-

grates several scientific data formats such as HDF5, PnetCDF,

Silo, ADIOS, and GNCF into various AI frameworks such

as PyTorch and TensorFlow. Additionally, Stimulus’ design

enables a modular approach to abstract common I/O and

runtime functionality through StimPack and StimOps respec-

tively. Finally, Stimulus cohesively integrates several scientific

data formats for popular AI frameworks while maximizing

portability and performance on the Summit supercomputer.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant no. OCI-1835764 and CSR-

1814872. Also, this work was performed under the auspices

of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract LLNL-CONF-832595. Fi-

nally, this research used resources of the Argonne Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357.

117

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational
intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[3] A. E. L. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, no. 19, pp. 70–76, 2017.

[4] C. J. Adams, “Neutrino and Cosmic Tagging with UNet,” 2015.
[Online]. Available: https://github.com/coreyjadams/CosmicTagger

[5] A. Agrawal and A. Choudhary, “Deep materials informatics: Appli-
cations of deep learning in materials science,” MRS Communications,
vol. 9, no. 3, pp. 779–792, 2019.

[6] X. Wu, V. Taylor, J. M. Wozniak, R. Stevens, T. Brettin, and F. Xia,
“Performance, energy, and scalability analysis and improvement of
parallel cancer deep learning candle benchmarks,” in Proceedings of the
48th International Conference on Parallel Processing, 2019, pp. 1–11.

[7] E. Bisong, “Tensorflow 2.0 and keras,” in Building Machine Learning
and Deep Learning Models on Google Cloud Platform. Springer, 2019,
pp. 347–399.

[8] V. Subramanian, Deep Learning with PyTorch: A practical approach to
building neural network models using PyTorch. Packt Publishing Ltd,
2018.

[9] S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Parallel I/O optimizations
for scalable deep learning,” in 2017 IEEE 23rd International Conference
on Parallel and Distributed Systems (ICPADS), 2017, pp. 720–729.

[10] S. Liu, B. Niu, D. Li, M. Wang, S. Tang, J. Kong, B. Li, X. Xie, and
Z. Zhu, “DL-assisted cross-layer orchestration in software-defined IP-
over-EONs: From algorithm design to system prototype,” Journal of
Lightwave Technology, vol. 37, no. 17, pp. 4426–4438, 2019.

[11] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, and others, “Workshop
report on basic research needs for scientific machine learning: Core
technologies for artificial intelligence,” USDOE Office of Science (SC),
Washington, DC (United States), Tech. Rep., 2019.

[12] C. Ertl, J. Frisch, and R.-P. Mundani, “Design and optimisation of an
efficient HDF5 I/O Kernel for massive parallel fluid flow simulations,”
Concurrency and Computation: Practice and Experience, vol. 29, no. 24,
p. e4165, 2017.

[13] A. Lintermann, S. Habbinga, and J. H. Göbbert, “Comprehensive
Visualization of Large-Scale Simulation Data Linked to Respiratory
Flow Computations on HPC Systems,” in SC’17: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017.

[14] R. Tchoua, J. Choi, S. Klasky, Q. Liu, J. Logan, K. Moreland, J. Mu,
M. Parashar, N. Podhorszki, D. Pugmire, and others, “Adios visualiza-
tion schema: A first step towards improving interdisciplinary collabora-
tion in high performance computing,” in 2013 IEEE 9th International
Conference on e-Science, 2013, pp. 27–34.

[15] M. Werth, J. Lucas, T. Kyono, I. McQuaid, and J. Fletcher, “Silo: A
machine learning dataset of synthetic ground-based observations of leo
satellites,” in 2020 IEEE Aerospace Conference, 2020, pp. 1–8.

[16] S. Nativi, P. Mazzetti, M. Santoro, F. Papeschi, M. Craglia, and
O. Ochiai, “Big data challenges in building the global earth observation
system of systems,” Environmental Modelling & Software, vol. 68, pp.
1–26, 2015.

[17] G. Fox and S. Jha, “Understanding ml driven hpc: Applications and
infrastructure,” arXiv preprint arXiv:1909.02363, 2019.

[18] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha,
and R. Buyya, “HPC cloud for scientific and business applications:
taxonomy, vision, and research challenges,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, pp. 1–29, 2018.

[19] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook, and others,
“CosmoFlow: Using deep learning to learn the universe at scale,”
in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018, pp. 819–829.

[20] D. Kang, V. Patel, K. Khandrika, S. Blanas, Y. Wang, and
S. Parthasarathy, “Characterizing I/O optimization opportunities for
array-centric applications on HDFS,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), 2018, pp. 1–2.

[21] R. Acciarri, C. Adams, C. Backhouse, W. Badgett, L. Bagby, V. Basque,
Q. Bazetto, A. Bhanderi, A. Bhat, D. Brailsford, and others, “Cosmic
Background Removal with Deep Neural Networks in SBND,” arXiv
preprint arXiv:2012.01301, 2020.

[22] W. Dong, M. Keceli, R. Vescovi, H. Li, C. Adams, E. Jennings,
S. Flender, T. Uram, V. Vishwanath, N. Ferrier, and others, “Scaling
Distributed Training of Flood-Filling Networks on HPC Infrastructure
for Brain Mapping,” in 2019 IEEE/ACM Third Workshop on Deep
Learning on Supercomputers (DLS), 2019, pp. 52–61.

[23] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, and others, “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2018, pp. 649–660.

[24] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P. Harrington,
J. Balewski, S. Matsuoka, P. Nugent, and B. Van Essen, “The case
for strong scaling in deep learning: Training large 3d cnns with hybrid
parallelism,” IEEE Transactions on Parallel and Distributed Systems,
2020.

[25] Andrew Feldman, “Cerebras: The world’s most powerful AI compute,”
5 2021. [Online]. Available: https://cerebras.net/

[26] S. W. D. Chien, S. Markidis, V. Olshevsky, Y. Bulatov, E. Laure, and
J. Vetter, “TensorFlow Doing HPC,” in 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp.
509–518.

[27] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel computational steering for hpc applications using hdf5 files
in distributed shared memory,” IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 6, pp. 852–864, 2012.

[28] G. Dong, K. G. Felker, A. Svyatkovskiy, W. Tang, and J. Kates-Harbeck,
“Fully Convolutional Spatio-Temporal Models for Representation Learn-
ing in Plasma Science,” arXiv preprint arXiv:2007.10468, 2020.

[29] S. Gope, S. Sarkar, P. Mitra, and S. Ghosh, “Early prediction of extreme
rainfall events: a deep learning approach,” in Industrial Conference on
Data Mining, 2016, pp. 154–167.

[30] T. Kurth, J. Zhang, N. Satish, E. Racah, M. Mostofa Ali Patwary,
T. Malas, N. Sundaram, W. Bhimji, M. Smorkalov, J. Deslippe,
M. Shiryaev, S. Sridharan, P. Dubey, and I. Mitliagkas, “Deep Learning
at 15PF Supervised and Semi-Supervised Classification for Scientific
Data,” vol. 11, 2017.

[31] T. Kurth, N. Luehr, J. Deslippe, S. Treichler, E. Phillips, M. Fatica,
J. Romero, A. Mahesh, A. Gov Prabhat, M. Mudigonda, M. Matheson,
and M. Houston, Exascale Deep Learning for Climate Analytics.

[32] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, Prabhat, and C. Pal,
“ExtremeWeather: A large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events,”
in Advances in Neural Information Processing Systems, vol. 2017-
December. Neural information processing systems foundation, 2017,
pp. 3403–3414.

[33] S. Ravanbakhsh, F. Lanusse, R. Mandelbaum, J. Schneider, and B. Poc-
zos, “Enabling dark energy science with deep generative models of
galaxy images,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

[34] E. Medina and E. Dagan, “Habana labs purpose-built AI inference
and training processor architectures: Scaling AI training systems using
standard ethernet with gaudi processor,” IEEE Micro, vol. 40, no. 2, pp.
17–24, 3 2020.

[35] OLCF, “Summit User Guide,” 2021. [Online]. Available: https:
//docs.olcf.ornl.gov/systems/summit user guide.html

[36] Tensorflow, “Create an op,” 2020. [Online]. Available: https://www.
tensorflow.org/guide/create op

[37] Facebook’s AI Research lab (FAIR), “Extending TorchScript with
custom C++ operators,” 2020. [Online]. Available: https://pytorch.org/
tutorials/advanced/torch script custom ops.html

[38] Caffe2, “Extending TorchScript with custom C++ operators,” 2020.
[Online]. Available: https://caffe2.ai/docs/custom-operators.html

[39] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

[40] J. Hu, S. Qian, Q. Fang, Y. Wang, Q. Zhao, H. Zhang, and C. Xu,
“Efficient Graph Deep Learning in TensorFlow with tf geometric,” arXiv
preprint arXiv:2101.11552, 2021.

[41] H. Devarajan and H. Zheng, “VaniDL Analyzer for Deep
Learning Workloads,” 2020. [Online]. Available: https://github.com/
hariharan-devarajan/vanidl

[42] H. Devarajan, “DLIO: Scientific Deep Learning I/O Benchmark,”
2020. [Online]. Available: https://github.com/hariharan-devarajan/dlio
benchmark

[43] S. W. D. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,
S. Narasimhamurthy, and E. Laure, “Characterizing Deep-Learning I/O
Workloads in TensorFlow,” 10 2018. [Online]. Available: http://arxiv.
org/abs/1810.03035http://dx.doi.org/10.1109/PDSW-DISCS.2018.00011

[44] H. Devarajan, A. Kougkas, and X.-H. Sun, “HFetch: Hierarchical Data
Prefetching for Scientific Workflows in Multi-Tiered Storage Environ-
ments,” in Proceedings - 2020 IEEE 34th International Parallel and
Distributed Processing Symposium, IPDPS 2020, 2020.

[45] P. Subedi, P. Davis, S. Duan, and others, “Stacker: an autonomic
data movement engine for extreme-scale data staging-based in-situ
workflows,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis. USA:
IEEE Press, 2018, p. 73.

[46] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun, “HCompress:
Hierarchical Data Compression for Multi-Tiered Storage Environments,”
in Proceedings - 2020 IEEE 34th International Parallel and Distributed
Processing Symposium, IPDPS 2020, 2020.

[47] S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Towards scalable deep
learning via I/O analysis and optimization,” in 2017 IEEE 19th Inter-
national Conference on High Performance Computing and Communica-
tions, 2017, pp. 223–230.

[48] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, “LBANN:
Livermore big artificial neural network HPC toolkit,” in Proceedings of
the Workshop on Machine Learning in High-Performance Computing
Environments, 2015, pp. 1–6.

[49] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, 2014, pp. 675–678.

[50] S. A. Jacobs, B. Van Essen, D. Hysom, J.-S. Yeom, T. Moon, R. Anirudh,
J. J. Thiagaranjan, S. Liu, P.-T. Bremer, J. Gaffney, and others, “Par-
allelizing training of deep generative models on massive scientific
datasets,” in 2019 IEEE International Conference on Cluster Computing
(CLUSTER), 2019, pp. 1–10.

118

