
pMEMCPY: a simple, lightweight, and portable I/O library for
storing data in persistent memory

Luke Logan, Jay Lofstead, Scott Levy, Patrick Widener, Xian-He Sun, Anthony Kougkas
Illinois Institute of Technology and Sandia National Labs

United States
llogan@hawk.iit.edu,{glofst,sllevy,pwidene}@sandia.gov,{sun,akougkas}@iit.edu

ABSTRACT
Persistent memory (PMEM) devices can achieve comparable per-
formance to DRAM while providing significantly more capacity.
This has made the technology compelling as an expansion to main
memory. Rethinking PMEM as storage devices can offer a high
performance buffering layer for HPC applications to temporarily,
but safely store data. However, modern parallel I/O libraries, such
as HDF5 and pNetCDF, are complicated and introduce significant
software and metadata overheads when persisting data to these
storage devices, wasting much of their potential. In this work, we
explore the potential of PMEM as storage through pMEMCPY: a
simple, lightweight, and portable I/O library for storing data in
persistent memory. We demonstrate that our approach is up to 2x
faster than other popular parallel I/O libraries under real workloads.

1 INTRODUCTION
Scientific applications generate massive amounts of data; however,
storage performance lags behind CPU performance resulting in
applications being bottlenecked by I/O both with other nodes as
well as with storage. One approach to alleviate this problem is to
expand the memory capacity of the nodes, enabling more local pro-
cessing before requiring communication. PMEM (e.g., phase change
memory and Intel DC Persistent Memory) offers an excellent so-
lution that is cheaper than DRAM, but offers reasonably similar
performance characteristics. This technology has driven consider-
able work into using DRAM as a working cache for an expanded
PMEM main memory [30]. As compelling as this case is, it only
addresses the inter-node portion of the bottleneck. For applications
where communication with storage is a more serious concern, us-
ing that same PMEM technology as fast storage (instead of slower
memory) offers a flexible resource that can address multiple kinds
of workloads. For example, various works investigate the use of
storage hierarchies in order to combat the I/O bottleneck [5, 21, 34].
In these works, storage such as PMEM, NVMe, SSD, and HDD are
arranged in a hierarchy based on performance and capacity char-
acteristics. Data is initially buffered in faster storage tiers and then
asynchronously flushed to slower mass storage, which helps avoid
costly data stalls. While there has been considerable work examin-
ing the use of node hosted storage technology with more favorable
performance characteristics than hard drives, the interfaces for
PMEM offer another potential performance gain, but only if the
software uses the devices with these more efficient interfaces.

Due to the DRAM-like performance of PMEM, software over-
heads are no longer negligible on the I/O path. For this reason,
researchers have started rethinking the design of node-local stor-
age stacks [1, 19, 23, 40, 41], which had previously been designed for
slow storage technologies, such as hard drives. EXT4/XFS DAX [1]

allows applications to directly store data in PMEM without first
copying to DRAM using memory mapped I/O. SplitFS [19] aims to
improve the performance of DAX by splitting metadata and stor-
age operations between kernel space and user space respectively,
allowing the majority of I/O operations to avoid the kernel entirely.
NOVA [40] is a log-structured filesystem that aims to exploit the
parallelism and random access properties of PMEM by storing logs
per-inode as opposed to a global log. These works avoid many
of the overheads introduced by the Linux kernel, such as context
switching, splitting/merging, lock contention, and request reorder-
ing. However, improving node-local storage stacks is not enough.
HPC applications typically use parallel I/O (PIO) libraries on top
of node-local storage stacks to persist data. Fundamental changes
in the design of PIO libraries must be made to gain the full benefits
of PMEM for I/O.

Various PIO libraries exist, such as ADIOS [13, 29], HDF5 [22],
and pNetCDF [24]. However, these libraries introduce significant
programming burden, software overhead, and complex configura-
tion spaces. In order to maximize the performance of these libraries
and reduce the user’s burden, researchers have investigated the
use of auto-tuning to identify optimal parameters specific to the
characteristics of applications and parallel filesystems [3, 4, 6, 7],
with approaches such as genetic algorithms and Bayesian optimiza-
tion. However, at a fundamental level, existing PIO libraries do not
interact with PMEM efficiently, regardless of how well they are
tuned. For example, all existing work depends on the use of MPI-IO
and POSIX, which causes unnecessary networking communication
and data copies that degrade the performance of I/O to PMEM [20].
Furthermore, PIO libraries tend to have complicated APIs, requiring
many lines of code to store simple data structures, such as arrays. A
simple memcpy interface is more desirable. PIO libraries should be
designed with awareness of the underlying device characteristics
in mind in addition to being more user-friendly.

In this work, we present pMEMCPY: a simple, lightweight, and
portable I/O library for storing data in persistent memory. Using
the Persistent Memory Development Kit (PMDK) [32], applications
have direct access to PMEM while maintaining consistency guar-
antees. Users can store data structures with a simple key-value
store interface that adds the minimal metadata necessary to dese-
rialize the data structures in addition to avoiding costly network
communications and data copies that other PIO libraries introduce.

Our contribution offers an optimized approach for parallel I/O li-
brary design that can store application data structures in node-local
PMEM directly with minimal overhead using a simple key-value
store interface similar to memcpy. Through this style of I/O library,
users can achieve the best possible PMEM performance for their
storage operations and enjoy an API much closer to memcpy.

SAND2021-8135CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Conference’17, July 2017, Washington, DC, USA Logan, et al.

The rest of this paper is organized as follows. First in Section 2
is a deeper discussion of background and related work. Next in
Section 3 we detail the reasoning and design decisions for our
demonstration. Section 4 presents a collection of evaluations com-
paring this approach against alternatives. Finally, in Section 5 we
summarize the work.

2 BACKGROUND & RELATEDWORK
There are various existing parallel I/O libraries, including HDF5,
ADIOS, and pNetCDF. Furthermore, there are various libraries and
APIs that exist to efficiently interact with PMEM. However, there
has been no published approach, to our knowledge, that demon-
strates how to optimize the I/O library for PMEM interfaces and
simplify the API to a most basic memcpy-like approach.

2.1 Parallel I/O (PIO) Libraries
HDF5 [22] is a popular PIO library, and is used as the foundations for
other popular PIO libraries, such as NetCDF4 [31]. HDF5 exposes
a hierarchical namespace to users, where H5Groups are analogous
to directories. HDF5 can store primitive types (ints, floats, doubles,
etc.), compound data types (structures), and arrays (H5Datasets) of
those types. Subsets of datasets can be taken using the Hyperslab
APIs. HDF5 can store datasets using various data layout policies:
contiguous, chunked, and compact. The contiguous layout stores
arrays as a 1-D sequence of data, and is the default layout for HDF5.
The chunked mode divides the array into fixed-size sub-arrays (i.e.,
chunks) where the dimensions of the sub-arrays are user-defined.
In chunked mode, HDF5 also allows for the definition of filters,
which are operations to perform on individual chunks, such as
compression [10, 11]. Lastly, if the dataset is less than 64KB, the
compact mode stores the dataset in its corresponding metadata
entry. In order to persist data to storage, HDF5 allows multiple
approaches: MPI Independent I/O, MPI Collective I/O, and POSIX
I/O. In each of these cases, the final output of HDF5 is a single
binary file. Furthermore, HDF5 introduced a multi-tiered buffer
management system, Hermes [21], that allows users to manage the
complexity of heterogeneous, multi-tiered storage environments
without changing application code. While HDF5 is a feature-rich
library that has specific functionality for buffering and prefetching,
it has many limitations. The Neuroscience community, for example,
has noted multiple flaws in the user-friendliness of this library [12].
HDF5 stores data in a single binary file, where metadata is not hu-
man readable. This also makes version control systems less efficient.
Furthermore, HDF5 compound types do not support the nesting of
compound types or dynamically sized arrays. Furthermore, MPI-IO
relies on the underlying filesystem (for Linux, read/write) APIs in
order to store data. However, read/write perform data copies which
introduces unnecessary overhead [20].

An alternative to HDF5 and NetCDF4 is the pNetCDF [24] library.
This was developed around the same time as NetCDF4 as an effec-
tive demonstration on how to maintain the NetCDF3 compatibility
as much as possible while extending for 64-bit support. While the
two libraries “compete”, the reality is that they co-exist peacefully
and are widely supported as a pair rather than individually. For
exmaple, the NCAR PIO library [9] offers a single API that can
switch to use either NetCDF4 or pNetCDF underneath. As with

HDF5, pNetCDF is designed with MPI-IO as the primary IO inter-
face for parallel IO and optimized for slow storage devices through
additional work to prepare data to more efficiently be moved into
storage. However, the performance gains of PMEM shifts the bottle-
neck of the storage device that afforded such optimizations without
noticeably hurting performance to the I/O library itself. NVMe
devices have had a similar effect [2], but PMEM offers additional
performance exasperating the performance overhead the software
layer imposes.

ADIOS is an alternative PIO library toHDF5, NetCDF and pNetCDF.
ADIOS aims to encompass various I/O transport mechanisms (e.g.,
MPI-IO, POSIX, HDF5, and netCDF) under a simplified interface
that is easily configurable and requires little change to application
code to change which implementation is used. The original design
of ADIOS was based on trying to reduce the code complexity of
HDF5 and acknowledge that some of the performance optimiza-
tions employed by HDF5 and other libraries that use similar PIO
techniques ultimately do not scale for writing or reading as well
as hoped [28]. One approach ADIOS uses to address the perfor-
mance gap is to use its own BP format whenever possible. BP offers
delayed consistency, lightweight data characterization, and data
resilience. Unlike HDF5, ADIOS stores data in the same format as it
was produced on a process-by-process basis rather than construct-
ing a global linearization of complex datastructures. For example, a
3D domain decomposition is stored as a single item in HDF5 with
all three dimensions across all processes being linearized through a
data rearrangement phase prior to hitting storage. This has the ad-
vantage of eliminating any potential artifacts from unusual process
decompositions. ADIOS has each process write the data it owns
with no coordination with other processes. This eliminates the data
rearrangement phase, which can improving performance greatly.
In particular, large 3D domain decompositions see radical perfor-
mance improvements for both writing and reading [28]. ADIOS
also supports transparent and custom operators, similar to HDF5.
Recently, ADIOS2 [13] was released, which provides a C++ inter-
face that is more simplistic and extensible than that of the original
ADIOS. Their recent revision includes a key-value store API for
storing data. However, ADIOS2 suffers from the same drawbacks as
the original when it comes to PMEM as it is storage device agnostic.

A more recent effort, Proactive Data Containers [33] offers a
similar key-value store approach for data management. However,
it is also designed to assume storage devices, such as SSDs with an
assumption that non-volatile memory devices will have compatible
interfaces to get the full performance benefits.

One system recognizing the need for a different interface to non-
volatile memory is DStore [14]. However, DStore is intended as a
way to store a log for an in-DRAM key-value store. Unlike other at-
tempts to optimize key-value stores with PMEM, such as MongoDB-
PMEM [17] and PMEM-RocksDB [39], DStore uses PMEM to store
the logs rather than as the main store offering greater performance
while still offering predictable consistency.

In all cases, effectively using PMEM using efficient interfaces is
a relatively new endeavour that popular HPC I/O libraries have yet
to embrace. While some progress has been made in the scale-out
space, the recent DStore paper demonstrates that a simple “switch
to the PMDK interface” may not be the most efficient nor optimal
approach for achieving both performance and price/performance.

pMEMCPY: a simple, lightweight, and portable I/O library for storing data in persistent memory Conference’17, July 2017, Washington, DC, USA

2.2 Accessing PMEM
PMEM can be exposed like any other storage device. Application
developers can use traditional filesystem APIs such as POSIX, stdlib,
and iostream in order to store data in PMEM. However, these inter-
faces introduce significant software overheads. For example, these
interfaces will cause unnecessary data copies and memory alloca-
tions to occur. To avoid this, applications can access PMEM directly
using memory mapped I/O (MMIO) and DAX. However, manag-
ing memory-mapped regions requires application developers to
provide their own memory allocation functions and concurrency
control mechanisms, which can cause data consistency and relia-
bility concerns.

The Persistent Memory Development Kit (PMDK) [32] is a collec-
tion of libraries and tools for managing PMEM devices. It provides
low-level primitives for interacting with PMEM and a transactional
object store that utilizes memory mapping in order to interface with
PMEM devices. What this really means is that PMEM is mapped di-
rectly in the memory space for a process enabling direct access. Un-
like MPI-IO and POSIX I/O, this approach allows applications direct,
zero-copy access to PMEM while providing consistency guarantees.
PMDK provides optimized memory allocation functions, persistent
locks, basic data structures (e.g., thread-safe lists), and transactions.
This allows applications to have efficient and safe access to PMEM
while reducing the complexity of managing memory-mapped files.

2.3 New Filesystems
In the Introduction, we covered many of the newer generation stor-
age systems written from the ground up to take advantage of solid
state, node local storage. However, these have all been written for
NVMe devices, at best, and still assume a more traditional device
interface. One major exception to this is DAOS [16]. The original
design of DAOS [27] was to offer a new storage architecture, but
still assuming non-PMEM storage devices. The current DAOS gen-
erations have been reimagined using Intel Optane PMEM devices as
a core component. Using these devices, DAOS was able to achieve
top marks on the IO500 list at sc19 [18]. More recent conversations
with the DAOS team about Optane and DAOS or other storage
use recommended at most 1% of the capacity using the PMEM
devices as a way to ensure top performance for the most critical
operations while keeping costs from spiraling out of control [26].
This makes DAOS a good potential candidate for using PMEM as a
storage device, but it does not address the I/O library layer entirely.
The plug-ins for HDF5 for speaking directly with DAOS and the
DAOS native APIs may offer better support. However, the interfaces
are still complex and focused on a container-like structure with
POSIX-structures layered on top.

3 DESIGN & IMPLEMENTATION
This work offers pMEMCPY, a simplistic and portable I/O library for
managing node-local PMEM. Our design assumes that the compute
nodes running the application also contain PMEM. Data structures
in memory are stored directly on PMEM without extra metadata,
context switching, or data copies beyondwhat is necessary to reload
the data during a different application run or for an analysis job.
Our assumed, basic machine architecture is illustrated in Figure 1.

PFS

 Node 0

PMEM
DRAM

...

Node 1

PMEM
DRAM

Node N

PMEM
DRAM

Shared Burst Buffer

Figure 1: Basic Machine Architecture

1. #include <pmemcpy/pmemcpy.hpp>
2. pmemcpy::PMEM pmem;
3. pmem.mmap(std::string filename, int comm);
4. pmem.munmap();
5.
6. pmem.store<T>(std::string id, T &data);
7. pmem.alloc<T>(std::string id,
8. int ndims, size_t *dims);
9. pmem.alloc<T>(std::string id,

10. pmemcpy::Dimensions dims);
11. pmem.store<T>(std::string id, T *data,
12. int ndims, size_t *offsets, size_t *dimspp);
13.
14. pmem.load<T>(std::string id);
15. pmem.load<T>(std::string id, T &num);
16. pmem.load<T>(std::string id, T *data,
17. int ndims, size_t *offsets, size_t *dimspp);
18. pmem.load_dims(std::string id,
19. int *ndims, size_t *dim);

Figure 2: pMEMCPY API

1. #include <pmemcpy/pmemcpy.h>
2. int main(int argc, char** argv) {
3. int rank, nprocs;
4. MPI_Init(&argc,&argv);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6. MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
7. pmemcpy::PMEM pmem;
8. size_t count = 100;
9. size_t off = 100*rank;

10. size_t dimsf = 100*nprocs;
11. char *path = argv[1];
12.
13. double data[100] = {0};
14. pmem.mmap(path, MPI_COM_WORLD);
15. pmem.alloc<double>("A", 1, &dimsf);
16. pmem.store<double>("A", data, 1, &off, &count);
17. MPI_Finalize();
18. }

Figure 3: pMEMCPY API Usage Example

API: pMEMCPY exposes a key-value interface for storing and
loading data from PMEM. Users can store primitive types, struc-
tured types, and arrays of these types using the templated load/store
APIs. The C++ API is shown in Figure 2. In Figure 3, we demon-
strate the usage of pMEMCPY for writing a 1-D array of data in
parallel. In the example, each process writes 100 doubles to non-
overlapping offsets in the array directly to PMEM. alloc is used
to specify the final dimensions of the array, and store is used to

Conference’17, July 2017, Washington, DC, USA Logan, et al.

1. #include <hdf5.h>
2. int main (int argc, char **argv) {
3. int nprocs, rank;
4. MPI_Init(&argc, &argv);
5. MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
6. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
7. hid_t file_id, dset_id;
8. hid_t filespace, memspace;
9. hsize_t count = 100;

10. hsize_t offset = rank*100;
11. hsize_t dimsf = nprocs*100;
12. hid_t plist_id;
13. herr_t status;
14. char *path = argv[1];
15. int data[100];
16.
17. plist_id = H5Pcreate(H5P_FILE_ACCESS);
18. H5Pset_fapl_mpio(plist_id,
19. MPI_COMM_WORLD, MPI_INFO_NULL);
20. file_id = H5Fcreate(path,
21. H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
22. H5Pclose(plist_id);
23.
24. filespace = H5Screate_simple(1, &dimsf, NULL);
25. dset_id = H5Dcreate(file_id, "dataset",
26. H5T_NATIVE_INT, filespace, H5P_DEFAULT,
27. H5P_DEFAULT, H5P_DEFAULT);
28. H5Sclose(filespace);
29. memspace = H5Screate_simple(1, &count, NULL);
30. filespace = H5Dget_space(dset_id);
31. H5Sselect_hyperslab(filespace,
32. H5S_SELECT_SET, &offset,
33. NULL, &count, NULL);
34.
35. plist_id = H5Pcreate(H5P_DATASET_XFER);
36. status = H5Dwrite(dset_id, H5T_NATIVE_INT,
37. memspace, filespace, plist_id, data);
38.
39. H5Dclose(dset_id);
40. H5Sclose(filespace);
41. H5Sclose(memspace);
42. H5Pclose(plist_id);
43. H5Fclose(file_id);
44. MPI_Finalize();
45. return 0;
46. }

Figure 4: Equivalent HDF5 Example

persist pieces of the array generated by each process. In Figure 4,
we show the equivalent HDF5 code. HDF5 requires a user to create
and free dataspace and dataset objects in addition to subsetting
the dataset, and each of these interfaces contain many parameters.
The dataspace defines the dimensions of the array, and the dataset
represents the array within HDF5. The HDF5 version is 42 lines of
code and 253 tokens, whereas our code is 16 lines and 132 tokens,
which is a 92% reduction in the number of tokens. Similar to HDF5,
NetCDF and pNetCDF requires users to define and allocate the di-
mensions of the array using special APIs, which adds unnecessary
complexity. While ADIOS simplifies this, it still requires the user
to store the dimensions of the array separately and then associate
those variables with the array. pMEMCPY automatically stores the
dimensions of the array and the per-process subarrays in the store
API by appending “#dims” to the id; dimensions can be queried
using load_dims. In Figure 5, we show the equivalent ADIOS code,

#include <adios.h>
int main(int argc, char **argv) {
 int rank, nprocs;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 char *path = argv[1];
 char *config = argv[2];
 double data[100];
 int64_t adios_handle;
 size_t count = 100;
 size_t offset = 100*rank;
 size_t dimsf = 100*nprocs;

 adios_init(config, MPI_COMM_WORLD);
 adios_open (&adios_handle, "dataset",
 path, "w", MPI_COMM_WORLD);
 adios_write (adios_handle, "count", &count);
 adios_write (adios_handle, "dimsf", &dimsf);
 adios_write (adios_handle, "offset", &offset);
 adios_write (adios_handle, "A", data);
 adios_close (adios_handle);
 adios_finalize (rank);
 MPI_Finalize ();
 return 0;
}

Figure 5: Equivalent ADIOS Example. Note, there is a sepa-
rate ADIOS config file that defines “A” in terms of count, off,
and dimsf.

which is 24 lines and 164 tokens. Overall, we see that pMEMCPY
provides a more simplified and compact API than other libraries.

Data Transfer and Serialization: Unlike ADIOS, NetCDF, and
pNetCDF which depend on POSIX and MPI-IO, pMEMCPY uses
memory mapping and independent I/O to store data in the node-
local PMEM, which avoids unnecessary data copies, network/inter-
process communications, and kernel interventions. When storing
a data structure in PMEM, pMEMCPY serializes the data using
well-known, portable serialization libraries, such as BP4 [13], Capn-
Proto [36], and cereal [38]. By default, the BP4 serialization (same as
ADIOS) is used; however, other serialization tools can be added, and
serialization can be completely disabled. Unlike similar work which
serializes data structures into an in-memory buffer and then copies
to PMEM, pMEMCPY can serialize the data directly into PMEM
without first placing it in DRAM, avoiding a significant data copying
cost. Furthermore, we allow users to configure whether or not the
MAP_SYNC flag is enabled when storing serialized data structures
in a region of PMEM. The MAP_SYNC flag guarantees that, after
a crash, a block that has been mapped into memory with write per-
missions will still be at the same offset within the file [8]. While this
improves crash consistency, this can introduce significant latency
penalties that severely degrade performance, as shown in our eval-
uations. After serialization, a burst buffer, such as DataWarp [15],
will then be triggered to asynchronously flush the buffered data
to mass storage. The data will be stored in the same format as it
was produced, similar to ADIOS, which avoids the network and
inter-process communication required to restructure the data.

Data Layout: By default, pMEMCPY stores all application data
in a single file similar to ADIOS, NetCDF, and pNetCDF. However,
pMEMCPY uses the PMDK [32] to manage PMEM, which provides
direct access to PMEM in addition to data consistency guarantees,

pMEMCPY: a simple, lightweight, and portable I/O library for storing data in persistent memory Conference’17, July 2017, Washington, DC, USA

0

5

10

15

20

25

30

8 1 6 2 4 3 2 4 8

PROCESSES

ADIOS NetCDF pNetCDF PMCPY-A PMCPY-B

I/O LIBRARY VS # PROCESSES (WRITES)

0

5

10

15

8 1 6 2 4 3 2 4 8

T
IM

E
(S

)

PROCESSES

Figure 6: Performance of writing a 40GB 3-D domain to
PMEM for a varying number of processes. PMCPY-A has
MAP_SYNC disabled, whereas PMCPY-B has it enabled.
Each process writes an equal amount of data. pMEMCPY is
2.5x faster than pNetCDF and NetCDF by avoiding network
communications and data copying costs. At 24 cores, pMEM-
CPY is faster than ADIOS by 15% when MAP_SYNC is dis-
abled, and slightly slower when MAP_SYNC is enabled.

concurrency control, and memory allocation policies. Metadata is
stored in a flat namespace using a hashtable with chaining. This
utilizes the high parallelism and random access characteristics of
PMEM.Alternatively, unlike ADIOS, NetCDF, and pNetCDF, pMEM-
CPY can layout data hierarchically using the PMEM’s filesystem. In
this approach, instead of writing to a single file, pMEMCPY stores
the data structures in a directory and creates a file for each variable.
Whenever a “/” is used in the id of the variable, a directory is created
if it didn’t already exist.

4 EVALUATIONS
Testbed: All tests were conducted in Chameleon Cloud using a
Compute Skylake node. Compute Skylake nodes come with 192GB
of RAM and 2x Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz, for a
total of 24 cores/48 threads. The OS used was Ubuntu 20.04 with
kernel 5.4.0-70-generic. We used openmpi 3.1.6.

Emulating PMEM: Since we do not have access to PMEM, we
emulate it using the approach presented in the Strata PMEM filesys-
tem paper [23]. We utilize Linux’s PMEM emulator to treat 80GB
of DRAM as PMEM and format the resulting PMEM device using
EXT4 with DAX enabled. We assume that PMEM has a read latency
of 300ns, write latency of 125ns, read bandwidth of 30GB/s, and
write bandwidth of 8GB/s [35]. We benchmarked DRAM bandwidth
and latency using Intel’s MLC [37] and use nanosecond-accurate
monotonic timers to add the additional latency and bandwidth
constraints.

4.1 Real-App Evaluation
In this test, we demonstrate the performance impact of pMEMCPY
over other popular PIO libraries using real workloads. In this eval-
uation, we use two workloads that were obtained through the help
of scientists [28]. The first workload is a write-only 3-D domain
decomposition problem where each process writes a rectangular
region of data to storage. The second workload is a read-only work-
load that reads the regions from storage. For both tests, we use

0

5

10

15

20

8 1 6 2 4 3 2 4 8

PROCESSES

ADIOS NetCDF pNetCDF PMCPY-A PMCPY-B

I/O LIBRARY VS # PROCESSES (READS)

0

1

2

3

4

5

8 1 6 2 4 3 2 4 8

T
IM

E
(S

)

PROCESSES

Figure 7: Performance of reading a 40GB 3-D domain from
PMEM for a varying number of processes. PMCPY-A has
MAP_SYNC disabled, whereas PMCPY-B has it enabled.
Each process reads an equal amount of data. pMEMCPY is 5x
faster than pNetCDF and NetCDF by avoiding network com-
munications and data copying costs. pMEMCPY is 2x faster
than ADIOS when MAP_SYNC is disabled. When enabled,
pMEMCPY performs no better than ADIOS.

between 8 and 48 processes. This model represents a large mem-
ory regular stencil code common in compute models today. One
example is the S3D combustion code [25] that was the inspiration
for this configuration. This model has been previously used [28] to
demonstrate potential I/O performance. In the write-only case, we
generate 10 3-D rectangles. For each test, a total of 40GB of data
is generated and the 40GB is divided equally among the processes.
Each element in the rectangle is a double precision floating point
value (8 bytes). The read workload is completely symmetrical to
the write workload, where each process reads the same data that
had been written. We measure the wall-clock time from the point
at which the file is opened/mmapped to when the it is closed. We
perform the I/O using ADIOS, NetCDF-4, pNetCDF, and pMEMCPY
and compare the runtime between the different approaches. For
NetCDF-4, we make sure to call nc_def_var_fill() with NC_NOFILL
in order to prevent it from initializing variables with a default value,
which causes significant overhead for write workloads. For pMEM-
CPY, we use BP4 serialization with the PMDK hashtable layout. We
run each experiment 3 times and take the average of the runs.

The results of the experiment are shown in Figures 6 and 7. From
these figures, we see the effects of concurrency due to the CPU
and PMEM wear off after 24 cores in the write case and for most
of the reads, with the exception of PMCPY-B and NetCDF4. This
makes sense considering the node has 24 physical CPU cores in
total. For NetCDF, the performance differences were largely due to
differences in the dimensions of the cube being read for the different
process counts. For PMCPY-B, this was because the metadata up-
dates were parallelized, which caused fewer stalls. Overall, we see
that pMEMCPY outperforms ADIOS, NetCDF, and pNetCDF in both
workloads whenMAP_SYNC is disabled. This is because pMEMCPY
avoids unnecessary communications and data copies that other PIO
libraries introduce. In the case of writes, all other PIO libraries first
generate the cube in DRAM, serialize the cube into another DRAM
buffer, and then copy the serialized cube to the PMEM whereas
pMEMCPY generates the cube in DRAM and then serializes the

Conference’17, July 2017, Washington, DC, USA Logan, et al.

cube directly into the PMEM, avoiding an entire copy of the cube.
From these figures, we see ADIOS performs far better than NetCDF
and pNetCDF in both read and write performance. This is because,
similar to pMEMCPY, ADIOS stores data in the same format as it
was produced, which avoids costly network communications and
data copies during the write phase. Furthermore, since the workload
is symmetrical, ADIOS does not need to realign any data, which mit-
igates data shuffling costs in the read phase. However, pNetCDF and
NetCDF store data contiguously, which requires data to be shuffled
during both reads and writes, incurring significant overhead. While
ADIOS performs much better than pNetCDF and NetCDF, it still
introduces data copying overheads that pMEMCPY avoids, causing
its performance to be suboptimal. For example, in the case of reads,
ADIOS requires the serialized data to be copied from PMEM into
DRAM and then deserialized into another DRAM buffer. pMEMCPY
deserializes the data directly from PMEM, avoiding the initial copy
from PMEM to DRAM.Within pMEMCPY, we see that the choice of
flags has a significant impact on performance. When MAP_SYNC is
enabled, the performance benefit of serializing/deserializing directly
from PMEM is completely lost, and can even cause performance to
be worse than simply using POSIX read()/write(). Overall, we see
that pMEMCPY can perform at least 15% better for writes and 2x
better for reads depending on the level of security the user requires.

4.2 Discussion
While standard I/O libraries offer a familiar interface, that can come
at a cost. ADIOS, with the design break from the previous gener-
ation demonstrates better performance, but is still not optimal by
a margin of 15% - 100%. Only by using an approach such as the one
we demonstrate in pMEMCPY can the full potential of PMEM as
a storage device be achieved.

5 CONCLUSIONS
Persistent memory (PMEM) is an extraordinarily fast persistent
storage device typically thought of as an extension of DRAM main
memory. However, using PMEM for storage requires revisiting the
design of parallel I/O (PIO) libraries. With PMEM being integrated
into compute nodes, PIO libraries should take full advantage of the
characteristics of these devices. However, popular libraries, such
as HDF5, ADIOS, and pNetCDF, introduce significant overheads
when applications store and load data. Furthermore, they introduce
complex interfaces and parameters that add unnecessary burden
on programmers. In this paper, we introduced pMEMCPY: a simple,
lightweight, and portable I/O library for storing data in persistent
memory. We compared our design with ADIOS, NetCDF-4, and
pNetCDF, and found that write speeds improved at least 15% and
reads improved up to 2x.

ACKNOWLEDGEMENTS
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

REFERENCES
[1] 2014. Direct Access for files. https://www.kernel.org/doc/Documentation/

filesystems/dax.txt
[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R Ganger,

and George Amvrosiadis. 2019. File systems unfit as distributed storage back-
ends: lessons from 10 years of Ceph evolution. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. 353–369.

[3] Babak Behzad, Surendra Byna, and Marc Snir. 2019. Optimizing I/O performance
of HPC applications with autotuning. ACM Transactions on Parallel Computing
(TOPC) 5, 4 (2019), 1–27.

[4] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna, Ruth
Aydt, Quincey Koziol, Marc Snir, et al. 2013. Taming parallel I/O complexity
with auto-tuning. In SC’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[5] Suren Byna, Quincey Koziol, Venkat Vishwanath, Jerome Soumagne, Houjun
Tang, Jingqing Mu, Bin Dong, Richard A Warren, François Tessier, Teng Wang,
et al. 2018. Proactive Data Containers (PDC): An Object-centric Data Store
for Large-scale Computing Systems. In AGU Fall Meeting Abstracts, Vol. 2018.
IN34B–09.

[6] Zhen Cao. 2019. A Practical, Real-Time Auto-Tuning Framework for Storage Systems.
Ph.D. Dissertation. State University of New York at Stony Brook.

[7] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. Towards better
understanding of black-box auto-tuning: A comparative analysis for storage
systems. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
893–907.

[8] Jonathan Corbet. 2017. Two more approaches to persistent-memory writes.
[9] John M Dennis, Jim Edwards, Ray Loy, Robert Jacob, Arthur A Mirin, Anthony P

Craig, and Mariana Vertenstein. 2012. An application-level parallel I/O library for
Earth system models. The International Journal of High Performance Computing
Applications 26, 1 (2012), 43–53.

[10] Hariharan Devarajan, Anthony Kougkas, Luke Logan, and Xian-He Sun. 2020.
HCompress: Hierarchical Data Compression for Multi-Tiered Storage Environ-
ments. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 557–566.

[11] Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. 2019. An intelligent,
adaptive, and flexible data compression framework. In 2019 19th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
82–91.

[12] Svenn-Arne Dragly, Milad Hobbi Mobarhan, Mikkel E Lepperød, Simen Tennøe,
Marianne Fyhn, Torkel Hafting, and Anders Malthe-Sørenssen. 2018. Experimen-
tal Directory Structure (Exdir): An alternative to HDF5 without introducing a
new file format. Frontiers in neuroinformatics 12 (2018), 16.

[13] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. ADIOS 2: The Adaptable Input Output System. A framework for
high-performance data management. SoftwareX 12 (2020), 100561.

[14] Shashank Gugnani and Xiaoyi Lu. 2020. DStore: A Fast, Tailless, and Quiescent-
Free Object Store for PMEM. In Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing (Virtual Event, Sweden)
(HPDC ’21). Association for Computing Machinery, New York, NY, USA, 31–43.
https://doi.org/10.1145/3431379.3460649

[15] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and
Nicholas J Wright. 2016. Architecture and design of cray datawarp. Cray User
Group CUG (2016).

[16] Intel. [n.d.]. DAOS: Revolutionizing High-Performance Storage with Intel Op-
tane Technology. https://www.intel.com/content/dam/www/public/us/en/
documents/solution-briefs/high-performance-storage-brief.pdf

[17] Intel. 2021. MongoDB Persistent Memory Storage Engine. Github. https:
//github.com/pmem/pmse

[18] io500. [n.d.]. 10 Node Challenge, I0500-SC19. https://www.vi4io.org/io500/list/19-
11/10node?fields=information__system,information__institution,information_
_storage_vendor,information__filesystem_type,information__client_nodes,
information__client_total_procs,io500__score,io500__bw,io500__md,
information__data,information__list_id&equation=&sort_asc=false&sort_by=
io500__score&radarmax=6&query=

[19] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: Reducing software overhead in file
systems for persistent memory. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 494–508.

[20] Juno Kim, Yun Joon Soh, Joseph Izraelevitz, Jishen Zhao, and Steven Swanson.
2020. SubZero: zero-copy IO for persistent main memory file systems. In Pro-
ceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems. 1–8.

[21] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: a
heterogeneous-awaremulti-tiered distributed I/O buffering system. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing. 219–230.

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1145/3431379.3460649
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-storage-brief.pdf
https://github.com/pmem/pmse
https://github.com/pmem/pmse
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=
https://www.vi4io.org/io500/list/19-11/10node?fields=information__system,information__institution,information__storage_vendor,information__filesystem_type,information__client_nodes,information__client_total_procs,io500__score,io500__bw,io500__md,information__data,information__list_id&equation=&sort_asc=false&sort_by=io500__score&radarmax=6&query=

pMEMCPY: a simple, lightweight, and portable I/O library for storing data in persistent memory Conference’17, July 2017, Washington, DC, USA

[22] Quincey Koziol, Dana Robinson, et al. 2018. HDF5. Technical Report. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States).

[23] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. 2017. Strata: A cross media file system. In Proceedings of
the 26th Symposium on Operating Systems Principles. 460–477.

[24] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William
Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale.
2003. Parallel netCDF: A high-performance scientific I/O interface. In SC’03:
Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. IEEE, 39–39.

[25] David Lignell, C Yoo, Jacqueline Chen, Ramanan Sankaran, and M Fahey. 2007.
S3D: Petascale combustion science, performance, and optimization. In Proceedings
of the Cray Scaling Workshop, Oak Ridge National Laboratory, TN.

[26] Jay Lofstead. 2021. PMEM for Storage Conversation in IO500 general Slack
channel. Slack. https://io500workspace.slack.com/archives/C01BMTNT56K/
p1612291357026500

[27] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent, and Eric
Barton. 2016. DAOS and friends: a proposal for an exascale storage system. In
SC’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 585–596.

[28] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Old-
field, Matthew Wolf, and Qing Liu. 2011. Six degrees of scientific data: Reading
patterns for extreme scale science io. In Proceedings of the 20th international
symposium on High performance distributed computing. 49–60.

[29] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and integration for scientific codes through the adaptable IO
system (ADIOS). In Proceedings of the 6th international workshop on Challenges of
large applications in distributed environments. 15–24.

[30] Jie Ren, Jiaolin Luo, Ivy Peng, Kai Wu, and Dong Li. 2021. Optimizing large-scale
plasma simulations on persistent memory-based heterogeneous memory with
effective data placement across memory hierarchy. In Proceedings of the ACM
International Conference on Supercomputing. 203–214.

[31] Russ Rew and Glenn Davis. 1990. NetCDF: an interface for scientific data access.
IEEE computer graphics and applications 10, 4 (1990), 76–82.

[32] Steve Scargall. 2020. PMDK Internals: Important Algorithms and Data Structures.
In Programming Persistent Memory. Springer, 313–331.

[33] Jerome Soumagne, Richard Warren, Jingqing Mu, Venkat Vishwanath, Francois
Tessier, Suren Byna, Quincey Koziol, Houjun Tang, Teng Wang, Bin Dong, and
Jialin Liu. [n.d.]. Final Technical Report - Proactive Data Containers for Scientific
Storage. ([n. d.]). https://doi.org/10.2172/1577855

[34] Kun Tang, Ping Huang, Xubin He, Tao Lu, Sudharshan S Vazhkudai, and Devesh
Tiwari. 2017. Toward managing hpc burst buffers effectively: Draining strategy
to regulate bursty i/o behavior. In 2017 IEEE 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 87–98.

[35] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In Proceedings of the 15th
International Workshop on Data Management on New Hardware. 1–7.

[36] Kenton Varda. 2013. Capn’n Proto Cerealization Protocol. https://capnproto.org/
[37] Thomas Willhalm Patrick Lu Blazej Filipiak Sri Sakthivelu Vish Viswanathan,

Karthik Kumar. 2015. Memory Latency Checker. https://software.intel.com/
content/www/us/en/develop/articles/intelr-memory-latency-checker.html

[38] Randolph Voorhies. 2014. cereal - A C++11 library for serialization. https:
//uscilab.github.io/cereal/

[39] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson. 2019. Finding
and fixing performance pathologies in persistent memory software stacks. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 427–439.

[40] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16). 323–338.

[41] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: a
tiered file system for non-volatile main memories and disks. In 17th {USENIX}
Conference on File and Storage Technologies ({FAST} 19). 207–219.

https://io500workspace.slack.com/archives/C01BMTNT56K/p1612291357026500
https://io500workspace.slack.com/archives/C01BMTNT56K/p1612291357026500
https://doi.org/10.2172/1577855
https://capnproto.org/
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://uscilab.github.io/cereal/
https://uscilab.github.io/cereal/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Parallel I/O (PIO) Libraries
	2.2 Accessing PMEM
	2.3 New Filesystems

	3 Design & Implementation
	4 Evaluations
	4.1 Real-App Evaluation
	4.2 Discussion

	5 Conclusions
	References

