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Abstract— Large-scale data analytics, scientific simulation, and
deep learning codes in HPC perform massive computations on data
greatly exceeding the bounds of main memory. These out-of-core al-
gorithms suffer from severe data movement penalties, programming
complexity, and limited code reuse. To solve this, HPC sites have
steadily increased DRAM capacity. However, this is not sustainable
due to financial and environmental costs. A more elegant, low-cost,
and portable solution is to expand memory to distributed multi-
tiered storage. In this work, we propose MegaMmap: a software
distributed shared memory (DSM) that enlarges effective memory
capacity through intelligent tiered DRAM and storage management.
MegaMmap provides workload-aware data organization, eviction,
and prefetching policies to reduce DRAM consumption while ensur-
ing speedy access to critical data. A variety of memory coherence
optimizations are provided through an intuitive hinting system.
Evaluations show that various workloads can be executed with a
fraction of the DRAM while offering competitive performance.

Index Terms—HPC, Systems Software, Memory Tiering, Storage
Tiering

I. INTRODUCTION

Traditionally, memory and I/O substrates have been considered
separate entities due to their differences in terms of performance
and persistence. However, modern data-intensive memory-centric
workloads widespread in HPC and Cloud are challenging these
distinctions. Data analytics [1], machine learning [2], and deep
learning [3] codes perform large-scale computations on data
which greatly exceed the bounds of memory, relying on explicit
data movements to I/O systems to meet basic capacity require-
ments. This often leads to significantly increased development
complexity [4] and suboptimal, one-off solutions where I/O and
compute happen in distinct, synchronous phases [5], incurring the
memory wall [6] problem in the compute phase and the notorious
I/O bottleneck [7] during the I/O phase. Conversely, scientific
simulation codes [8] are becoming increasingly memory-
intensive and are developed assuming large memory capacities
are provided to avoid out-of-core development complexity. To
reduce code complexity and I/O costs, HPC and Cloud sites
have been steadily increasing total DRAM capacity so that
datasets can be staged primarily in main memory [9]. However,
while many applications desire an effectively infinite memory
to generate and analyze massive datasets, the ever-increasing
size of data [10] and the extreme financial and energy costs of
DRAM [11], [12] make scaling DRAM capacity unsustainable.

To provide applications the capacity and bandwidth they
require, heterogeneous storage is being explored. Modern storage
accelerators (e.g., NVMe, Phase Change Memory, and Compute
Express Link) have made significant advances in terms of
capacity, bandwidth and latency, offering performance within an
order of magnitude of DRAM while providing high density [13].
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These accelerators have already been adopted in several HPC sites.
ORNL’s Summit and Lawrence Livermore’s El Capitan machines,
for example, come equipped with high-bandwidth, low-latency,
node-local NVMes, whereas Argonne’s Aurora machine contains
both NVMe and 3D XPoint modules. However, while modern
storage provides great potential to improve performance, present-
ing this highly heterogeneous Deep Memory and Storage Hi-
erarchy (DMSH) to applications remains an ongoing challenge.

In order to address the performance, programmability, and
capacity limitations of distributed out-of-core algorithms, the
semantic gap between memory and heterogeneous storage should
be eliminated through a tiered, nonvolatile Distributed Shared
Memory (DSM) abstraction. With this approach, datasets can
be produced and analyzed in what appears as a single, coherent
main memory, when in reality data is dispersed among both
memory and tiered storage. This removes the burden of explicit
I/O synchronization and memory management from developers,
while simultaneously reducing data movement overheads by
leveraging storage accelerators and allowing compute and I/O to
execute concurrently. While several DSM solutions have been
proposed and deployed in production Cloud centers [14], none
currently provide transparent integration with tiered storage,
persistence, and optimizations for HPC. In order to provide
such an abstraction, several challenges must be overcome.

First, applications should be able to propagate their access
pattern intention. Existing DSMs are unaware of the regions
of shared memory that will be read or modified until it happens,
which limits the effectiveness of prefetching and data placement
algorithms [15] and causes extreme overheads to maintain
memory coherence [16]. While this may appear as an imposition
to users, many distributed and out-of-core algorithms are
already structured to accomplish this, as they typically operate
over large, well-defined subsets of out-of-core data between
synchronization points, such as barriers and locks [17].

Second, memory coherence policies must be optimized to
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address the characteristics of HPC environments. DSMs are
primarily designed to support chaotic, unpredictable multi-tenant
Cloud workloads while remaining fault-tolerant, incurring
prohibitive communication overheads to locate and invalidate
replicas [17]. However, HPC applications are typically executed
in isolation, do not require fault tolerance, and are oftentimes
coordinated, where data structures are read and modified in
well-defined phases [18] (e.g., producer-consumer workflows).

Third, new data placement and prefetching policies must be
developed to support the DMSH and consider memory-centric
application behavior. Existing DSMs operate only over a single
tier and have no indication of access pattern. However, hardware
in the DMSH is highly diverse, requiring considerations
to device lifetime, access pattern, capacity, latency, and
bandwidth. In addition, out-of-core workloads tend to operate
over large datasets iteratively, where a large subset of the
dataset is processed and then ignored [19]. This behavior offers
opportunity to overlap data movement with the computation.

In this work, we present the design and implementation
of MegaMmap: a new tiered, nonvolatile DSM for HPC that
abstracts both remote memory and storage, effectively provid-
ing infinite memory capacity without sacrificing performance.
MegaMmap provides a C++ library that leverages language fea-
tures to provide a uniform, byte-addressable interface to present
massive datasets as if they were in memory. A transactional
memory API is provided, allowing applications to specify their
intent to read or modify a region of data. Internally, MegaMmap
manages the complexity of data placement among the distributed
memory and storage hierarchy through the use of novel online
prefetching and data organization algorithms. Factors such as ran-
domness seeds and access intent are used to guide data organiza-
tion decisions and ensure that global memory accesses do not fre-
quently have to stall for remote memory or storage. MegaMmap
provides a wide variety of intent-aware cache-coherency opti-
mizations to minimize memory access latency for a variety of
workloads. The contributions of this work are as follows:
1) A durable, persistent, and intuitive Distributed Shared

Memory (DSM) system, which significantly reduces
out-of-core development complexity by allowing applications
to present massive datasets as memory objects.

2) A user-driven transactional memory access API, which leads
to improved decision-making in cache coherence and data
organization policies by propagating memory access intent.

3) A comprehensive set of intent-aware memory coherence
optimizations, which improves the latency and bandwidth
of memory accesses based on workload characteristics.

4) A wide variety of tiered data organization policies, which
minimize I/O stall times by leveraging heterogeneous storage
hardware and advance knowledge of access pattern intent.

II. BACKGROUND AND RELATED WORK

Software DSM is being investigated as a method of reducing
the programming burden of analyzing massive datasets in
memory and sharing information between processes [20].
Much research has been conducted to discuss the latency
considerations of cache coherency and the effectiveness of data
placement and prefetching in shared memory systems.
Memory Mapped I/O (MMIO): MMIO [21] enables
applications to share data across processes and present files
as C-style arrays. In the persistent case, data from the file is
automatically loaded from the storage system during a page fault.

Modifications to the file are made in the OS page cache and then
evicted either asynchronously or by an explicit synchronization
call (e.g., msync or fadvise). MMIO simplifies programming
out-of-core algorithms by removing the burden of deciding
which parts of the file are buffered in main memory from the
developer [21]. However, this approach traditionally suffers
in performance due to frequent page faulting [22], little-to-no
prefetching requiring complex mmap tracing [23], and significant
I/O overhead caused by fixed (typically 4KB) page sizes [24].
The default page fault path in mmap can be customized to
change prefetching and data placement policies by either editing
the kernel directly or leveraging the userfaultfd [25] system call.
Efforts are being made to improve the performance of MMIO
for single-node and DSM systems, described below.
Single-Node Shared Memory: Several works have been
proposed customizations to the traditional MMIO path to
improve performance and resource utilization in single-node
cases. uMMAP-IO [24], for example, utilizes this approach
to extend virtual memory to SSDs and Hard Drives for HPC
workloads, effectively increasing memory capacity. However,
userfaultfd increases the cost of an individual page fault
due to increased context switching between the kernel and
userspace [26]. Many works aim to provide custom page fault
handlers while avoiding userfaultfd [21], [27], [28], [29], [30].
Aquila [27] and FlatFlash [30], for example, make kernel
modifications to reduce software overheads of the MMIO path. To
avoid kernel modification, Tricache [29] uses LLVM to prepend a
custom buffer cache handler before all CPU load/store operations,
removing a physical page fault entirely. In their specific page
handler code, NVMes are used as a temporary buffering layer
via the Storage Performance Development Kit (SPDK). These
works are focused on single-node, multi-threaded applications,
not fully distributed, multi-process shared-memory applications.
Distributed Shared Memory (DSM): DSM allows applications
to access remote memory as if it were its own memory.
These works typically extend the virtual memory management
subsystems of the OS to implement custom page fault handlers
to provide the shared memory abstraction, although some use
language features (e.g., operator overloading). A number of
works have proposed designs and improvements to DSM systems.
TreadMarks [16] uses virtual memory to provide a unified global
address space, but suffers from extreme cache-coherence over-
heads. A1 [14] is a distributed in-memory graph database used by
Microsoft to support the Bing search engine. A1 focuses on opti-
mizing DSM latency for graph problems over commodity DRAM
by using lightweight RDMA networks. Concordia [20] proposes
a network protocol to reduce the overhead of DSM cache-
coherency on fast networks by offloading the coherency protocols
to programmable network switches. Leap [31] discusses a kernel-
level algorithm to prefetch remote memory using RDMA into
the Linux page cache. HotPot [17] explores a DSM that replaces
DRAM with Intel Optane DC Persistent Memory (DCPMM), but
does not investigate tiering algorithms. Alternatively, Grappa [32]
provides specific optimizations of shared memory for graph-based
and SQL-like workloads. Currently, DSMs focus on single-tier
approaches for Cloud workloads, and have not yet explored
the implications of expanding memory capacity to nodes with
multiple tiers of storage.
Partitioned Global Address Space (PGAS) Languages:
Alternative to DSMs, PGAS languages provide distributed



applications the illusion of a global unified memory address space
through the use of language features [33]. The PGAS library man-
ages the complexity of unifying the underlying disjoint memory
systems and provides abstractions to allocate memory and inform
data movement strategies [34]. To improve performance, PGAS
libraries provide explicit APIs to fetch remote data as needed. A
number of PGAS languages have been proposed, including Open-
SHMEM [35], Charm++ [36], and UPC(++) [37]. UPC++ [37],
for example, uses C++ to overload the address operator to abstract
the complexity of mapping pointer offsets to physical memory lo-
cations. Synchronization primitives such as locks and futures are
also provided. From these primitives, more complex objects such
as unordered maps and queues can be implemented. Generally,
these libraries have better performance than traditional DSMs,
as they avoid page fault overheads and have finer control over
message granularity and scheduling. However, developers are
responsible for manually partitioning datasets into the PGAS
library and tracking what data is local and remote, which can
increase programming complexity and force strict requirements
on application structure [32]. Lastly, PGAS, libraries currently
only consider remote DRAM, and have yet to explore expansion
to other storage tiers such as local and remote NVMe and HDD.

Non-DSM Tiered and PMEM Storage Management:
Multi-tiering has existed for decades. Many prefetching and data
placement methods that target caching between low-level CPU
caches and main memory [38], [6] have been proposed. However,
CPU caches have different hardware characteristics from storage
such as Persistent Memory (PMEM) and NVMe [39], [40].
More relevantly, there has been some work on buffering between
main memory and storage [7], [41], [42]. The Linux kernel
provides the OS page cache, which enables I/O to be temporarily
cached in main memory, while asynchronously shifting data
to and from disk. However, the provided data placement and
prefetching policies of the kernel only support two-tier caching
(i.e., DRAM + HDD). Many PMEM filesystems [43], [44]
have emerged that consider the interaction between DRAM and
PMEM. While they abstract devices that are byte-addressible,
the filesystems in general only support POSIX I/O and do not
provide a DSM interface (nor MMIO) abstracting these devices.
Other works have expanded buffering to N-tiers of storage.
Hermes [7], for example, is an extensible distributed hierarchical
buffering platform which transparently manages all local and
remote storage tiers in order to provide increased bandwidth
for HPC workloads. However, the existing data placement
policies provided in Hermes focus on the I/O of high-bandwidth
checkpoint-restart HPC workloads, not memory patterns in
memory-centric workloads. In addition, these technologies are
interfaced using I/O libraries such as POSIX and HDF5, and not
through a global, byte-addressable shared memory abstraction.

Background Summary: Our extensive literature review indicates
that no existing DSM system can effectively integrate memory
and tiered storage to provide a unified, logical memory space for
massive datasets. Existing DSM solutions focus only on local and
remote memory, and do not consider intermediate storage. Solu-
tions that provide byte-addressable abstractions over memory and
storage simultaneously are only designed for single-node cases
(e.g., MMIO) and cannot be directly applied to provide shared
memory in distributed cases, as they do not consider the complexi-
ties of distributed memory coherence and metadata management.
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III. DESIGN

MegaMmap is a fully distributed and tiered shared memory
designed to provide modern scientific applications an efficient,
intuitive, and portable way of sharing massive amounts of data
between processes while hiding the complexity of data movement,
cache coherence, and resource management. MegaMmap exposes
byte-addressible APIs, similar to mmap and std::vector,
allowing out-of-core datasets to be produced, presented, and
analyzed in what appears as an infinite main memory. These
APIs internally fragment and cache application data as pages of
configurable size. Applications can specify their access intentions
through a transactional memory API. Several cache coherence
policies are provided through the use of a hinting system, reduc-
ing communication and data movement overheads for several
common access patterns experienced in data-intensive workloads.
To ensure DRAM is well-utilized and I/O stalls are minimized,
pages are automatically evicted, prefetched, and organized in
the DMSH through extensible prefetching and data organization
engines. These engines can be tuned to the specific behavior of
the application to offer maximum bandwidth and latency. We pro-
vide several such policies based on the memory patterns of several
common HPC machine learning and simulation algorithms. The
high-level architecture of MegaMmap is depicted in Figure 2.
MegaMmap is designed with the following objectives in mind:

1) Intuitive: MegaMmap should hide the complexity of data
movement for memory-centric, out-of-core workloads behind
an easy-to-use memory API.

2) Heterogeneous: MegaMmap should provide algorithms that
automatically manage the organization and coherency of
data in a tiered environment.

3) Semantic: MegaMmap should provide developers a way to de-
scribe application intent to inform data organization policies.

4) Portable: MegaMmap should be compatible with a variety
of application structures.

5) Persistent: MegaMmap should ensure that data is correct
and persistent after a job ends.



1 #include <mega_mmap/vector.h>
2

3 void KMeansInertia(std::vector<Point3D> &ks) {
4 int rank = mpi::get_rank();
5 int nprocs = mpi::get_comm_size();
6 mm::Vector<Point3D> pts("/points.parquet");
7 pts.BoundMemory(MEGABYTES(1));
8 pts.Pgas(rank, nprocs);
9 float distance = 0;

10 tx = pts.SeqTxBegin(
11 pts.local_off(), pts.local_size(),
12 MM_READ_ONLY);
13 for (Point3D p : tx) {
14 distance += pow(NearestCentroid(p, ks), 2);
15 }
16 pts.TxEnd();
17 return distance;
18 }

Listing 1: An example of MegaMmap for calculating inertia
in KMeans. A nonvolatile, read-only shared vector pts maps
an existing file named pts.parquet. The vector size is the
dataset size (transparently queried using the parquet library)
divided by the size of Point3D. The vector is limited to store
1MB of data in DRAM before evictions are triggered. The
elements of the vector are logically partitioned evenly among
processes (Pgas). A read transaction is initiated, where a for
loop then iterates over the dataset and calculates the sum of
squared distances (inertia).

A. An Intuitive and Portable Nonvolatile Shared Memory
Abstraction

Programming distributed out-of-core algorithms requires signif-
icant developer effort to manage the capacity constraints of main
memory [45], leading many data-intensive applications to divide
into distinct, alternating, and synchronous phases of compute
and I/O, where I/O is oftentimes the bottleneck [7], [46]. This
conceptual separation between memory and storage leads to the
ever-increasing DRAM capacity in modern computing machines
to avoid such bottlenecks [47], causing severe environmental
impacts due to high energy costs [48]. MegaMmap bridges this se-
mantic gap between memory and storage by providing unified, co-
herent infinite shared memory abstractions. To avoid explicit I/O
phases, MegaMmap provides a nonvolatile memory abstraction
that transparently synchronizes data to arbitrary storage backends,
such as a file on a PFS. Applications can inform MegaMmap of
expected behavioral patterns through the use of a comprehensive
transactional memory hinting API to optimize cache coherence
and data movement policies. This section provides details on
the specifics of the abstractions provided by MegaMmap.
An Infinite Shared Memory Abstraction: To give applications
the illusion of a large memory, MegaMmap implements a
shared memory vector API, providing implementations of several
functions and operators including array index, memory copy, ac-
quiring current size, appending, resizing, and destroying the data
container. Processes connect to the shared vector using a semantic,
user-defined key common to all processes. The vector API is
highly versatile and allows more complex distributed data struc-
tures, such as matrices, logs, and multi-dimensional arrays, to be
developed using simple offset calculations and appends. Through
C++ templating, MegaMmap can theoretically store any type of

data – including complex C++ classes, so long as a serialization
method is provided. Unlike standard C++ vectors, MegaMmap
shared vectors are not destroyed in the destructor – users must
explicitly destroy them. This is to avoid the race condition where
processes finish at separate times. Shared vectors can be either
volatile or nonvolatile, where volatile vectors store temporary data
that is difficult to fit in memory and nonvolatile vectors represent
data that should eventually be persisted to storage for future use.
Presenting Persistent Datasets as Memory: Data-intensive
applications either produce or analyze a persistent dataset that
cannot fit trivially in memory. To reduce the burden of out-of-core
programming for persistent data, MegaMmap allows nonvolatile
shared vectors to be created with a backing persistent object (e.g.,
a file on parallel filesystem). In this case, the key of the vector
is structured as a URL (i.e., “protocol://URI:params”), where all
information needed to read and write the object, including factors
such as identifiers and port number are provided. This format
is versatile, allowing MegaMmap to represent a variety of data
formats (e.g., HDF5) and repositories (e.g., Amazon S3) without
requiring the application to commit to any particular library’s
semantics. For example, an HDF5 group can could be represented
with the URL hdf5::///path/to/df.h5:mygroup.
Alternatively, multiple data objects, such as files produced
in a file-per-process HPC simulation, can be mapped
as a single uniform vector via a regex query such as
file:///path/to/dataset.parquet*.
Enabling Resource Utilization Control: Balancing memory
constraints typically requires programmers to be cognizant of the
amount of data being allocated and the persistence requirements
of the data, which is particularly challenging in out-of-core
programs. MegaMmap provides explicit, fine-grained control
over memory and storage capacity constraints. Applications can
specify the maximum amount of DRAM and high-performance
storage to use for caching using either the native C++ API or
the MegaMmap configuration YAML file, which additionally
contains settings regarding the nodes to deploy MegaMmap on,
port numbers, etc. When the capacity constraints are reached,
MegaMmap will automatically and transparently evict and
reorganize pages in the DMSH.
Supporting Arbitrary Application Structures: There are many
ways to structure distributed applications, such as parallel mes-
sage passing and MapReduce. To remain compatible with any ap-
plication structure, MegaMmap provides several synchronization
options to ensure parallel application correctness. This includes
distributed locks and barriers. These mechanisms can also be sup-
plied by means of a higher-level library, such as MPI and UPC++.
Informing Policy with Transactional Memory: In order for
memory tiering to perform well, applications must exhibit
predictable behavior and convey that behavior to the underlying
prefetching, eviction, and coherence algorithms. Transactions
are used to inform MegaMmap of the access pattern a region
of shared memory is about to incur and when it has completed
within a particular process, accomplished through the transaction
begin (TxBegin) and transaction end (TxEnd) methods.
The TxBegin API includes hints on access method, such as
read, write, and append. It also includes the indices that will
be accessed. For sequential accesses, the offset and size of
memory can be used. Modifications made between TxBegin
and TxEnd are not required to be visible to other processes
immediately. TxEnd commits all unflushed data that was not
automatically flushed. Users can develop their own custom



struct PageRegion {
size_t page_idx, off, size;
bool modified_;

};
class Transaction {
bitfield32_t flags;
size_t head, tail;

virtual std::vector<PageRegion>
GetPages(size_t off, size_t count) = 0;

auto GetTouchedPages() {
return GetPages(head, tail - head);

}
auto GetFuturePages(size_t count) {
return GetPages(tail, count);

}
};

Listing 2: The transaction base class. GetPages predicts the
regions of a page that will be accessed based on the number of
memory accesses encountered (tail). head is the number of
memory accesses acknowledged by the prefetching algorithm.

transactions by inheriting from the transaction class (shown
in Listing 2) and using a templated TxBegin method. With
this knowledge in advance, prefetching, eviction, reorganization,
and coherence algorithms can be far more effective.
Use Case - KMeans: KMeans is a read-intensive clustering
algorithm, where each process is given a non-overlapping subset
of a dataset. In parallel, each training iteration locates the
centroid nearest to a sample point in terms of a given distance
metric (e.g., euclidian) and calculates inertia by summing the
calculated distances. An example of how to apply MegaMmap
to this workload is shown in Listing 1.
Use Case - Random Forest (RF): RF is a mixed workload, where
each iteration builds a decision tree based on a random subset
of features and samples. This practice is known as out-of-order
bagging. Each process of RF randomly subsets a subsample of the
whole dataset with replacement and decides the split point of the
decision tree based on the entropy of each feature. The dataset is
then divided into left and right samples based on the split point.

B. Actively Ensuring Data Persistence and Consistency
Storage accelerators in HPC sites are ephemeral, ending when

the application’s job ends. In order to ensure that data remains
persistent, all cached data must be flushed out of these devices
into a persistent backend, such as a parallel filesystem. In addition,
data may be expected in a particular format, such as HDF5 or
NetCDF. This requires data stored in cache to be converted into
the application’s desired format. To ensure data remains persistent
after the job ends, MegaMmap actively flushes modified data
to storage during periods of computation. This reduces the cost
of explicit synchronization functions. MegaMmap also ensures
that data is stored in its proper format by transparently and
asynchronously staging data in and out of the backing storage.
This section provides details on the overall lifecycle of memory
pages in MegaMmap and the high-level architecture in Figure 2.
Distributed Heterogeneous Caching Structure: There are two
page caches in MegaMmap: the Private Cache (pcache)
and Shared Cache (scache). The pcache is a DRAM-
only cache of configurable maximum size that is stored per-

process, while the scache is distributed, tiered, and coherent
across multiple processes. Each application process is linked
to the MegaMmap library, which internally stores the pcache
and a queue for submitting MemoryTasks to the MegaMmap
runtime, which is a process running separate from applications
that manages the scache. The runtime can dedicate a configurable
maximum number of CPU cores and dynamically adjusts the
number of cores based on experienced load using an approach
similar to LabStor [46]. When the application reads or writes to
MegaMmap, it first goes through the pcache. If a memory page
is not currently cached, a page fault will occur. If space is needed
to service the page fault, an eviction will occur. Users can also
explicitly flush the content of pages to ensure modifications are
visible to other processes. During page fault, eviction, and flush-
ing operations, the MegaMmap library constructs a MemoryTask
that contains the subset of a page to read or update from the
scache. The task will be placed in the queue and polled by the
runtime, which will then be scheduled to a worker and executed.
Strong Consistency through MemoryTask Scheduling:
MegaMmap allows distributed processes to interact with
potentially the same data concurrently. It is possible that multiple
processes intend to modify the same parts of data simultaneously.
To provide strong consistency (i.e., read-after-write guarantees),
the runtime’s Scheduler ensures MemoryTasks for the same
page are hashed to the same worker. To improve performance,
MegaMmap allows reader tasks to proceed in parallel until a
writer task is encountered. Writes can be executed concurrently
if they are to non-overlapping subsets of the page. To further
improve performance, the MegaMmap scheduler divides
workers into low-latency and high-latency groups. MemoryTasks
containing less than 16KB of data will be sent to low-latency
workers, which are scheduled on different CPU cores from
high-latency workers. This is to ensure that latency-sensitive
requests are not stalled by large requests, which has been shown
to improve quality-of-service in several applications [46].
Lifecycle of Modified Data: MegaMmap transactions mark a
period of time when modifications made to memory do not need
to be visible to other processes immediately. For this reason,
MegaMmap uses copy-on-write semantics for handling memory
modifications. Processes write to their local pcache first and
have their own view of data. During the end of a transaction,
an eviction, or an explicit user-driven call to flush, the process’s
local modifications are made visible to other processes. Since
transactions store the exact memory accesses made, only the
bits of the page that were modified during a transaction will
be a part of the writer MemoryTask operation. This reduces I/O
amplification and improves data correctness, since stale data will
not be included in the MemoryTask operation updates. To further
improve performance, writer MemoryTasks are constructed with a
copy of the modifications and are then executed in a non-blocking,
asynchronous fashion. During an eviction, the application will
only experience the performance cost of a memory copy, instead
of metadata updates, networking operations, and potentially an
I/O operation. When the writer MemoryTask is scheduled on
one of the Runtime’s workers, the data organization engine will
be invoked to decide the placement of data in the DMSH.
Read, Page Fault, and Prefetcher Path: When reading data
from MegaMmap, either the data is present in the pcache
or must be fetched from the scache. Read operations first
check the pcache for existence. If a page is not present in the
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Fig. 3: Overview of coherence policies. Read (R) / write (W)
to non-overlapping regions will first place data locally on the
node that produced it without synchronization. Read-only will
allow for data to be replicated in the shared cache to improve
availability. Read, write, append global will hash page faults
and evictions to the same worker.

pcache, a synchronous page fault occurs, which constructs a read
MemoryTask and submits to the runtime. To reduce the frequency
and cost of page faults, the MegaMmap library also provides
a lightweight prefetcher, which constructs asynchronous
score MemoryTasks based on the nature of the active memory
transaction. The importance score is a number between 0 and 1
representing the priority of a memory page to a particular process.
These scores are sent to the Data Organizer in the runtime, which
determines the composition of data in the DMSH. Pages with
higher scores will be elevated to high-performance tiers, while
pages with lower scores will be evicted to lower tiers. The Data
Organizer will take the maximum of scores if several processes
score the same page within a configurable timeframe.
Persistently Integrating Memory with Storage: To improve
code reuse and portability, MegaMmap allows arbitrary datasets
to be presented as shared vectors, where the vector’s name is
the URL of the data to load in storage (e.g., a path on a POSIX
filesystem). This requires data to be transparently integrated
with a particular backend before a job ends. To accomplish this,
the Data Stager is responsible for serializing, deserializing,
and flushing content to the backend. The stager is an extensible
component containing integrations with widely-used file formats
(e.g., HDF5, Adios2, parquet) and storage services (e.g., PFS,
Amazon S3). When an application initially constructs a persistent
MegaMmap vector, the key of the vector will indicate the type
of staging service to use through a URL format. For example,
“hdf5:///path/to/df.h5:mygroup” will ensure that pages which
are part of the df.h5 vector will be sent to the HDF5 stager.
Periodically and during the termination of the runtime, the stager
task will be scheduled to serialize pages in the scache and persist
them. During a page fault, if a page is not present in the scache,
the stager will be invoked to read and deserialize a subset
of data from the persistent backend. These (de)serialization
functions allow MegaMmap to transparently load content from
storage in the format applications expect to operate on, without
requiring specific linkage or semantics of the I/O library.

C. Efficient Memory Coherency
Cache coherence (i.e., two processes accessing the same mem-

ory should have equivalent data views) has been widely studied
in the context of persistent distributed data structures. There are
several workload patterns and use cases where optimizations can
be made to reduce communication, synchronization, and data

movement. Traditional DSMs focus on coherence to handle small
random reads and writes to local and remote DRAM housing tem-
porary content. These algorithms assume that applications access-
ing data are uncoordinated, in addition to requiring specific page
sizes (4KB, 2MB, and 1GB) due to physical restrictions imposed
by the CPU. This results in poor I/O access patterns, increased
communications, and significant software overheads. MegaMmap
supports reads and writes to both temporary and persistent data
fragmented among multiple tiers of memory and storage. To offer
high performance for a variety of HPC workloads, MegaMmap
supports workload-specific page granularity configuration, partial
paging, and configurable coherency optimizations depending
on access pattern and coordination. This section discusses the
coherence algorithms used for the pcache and scache.
Coherency Optimizations with Transactional Memory:
Modern DSMs are built to be correct for chaotic access patterns
and multi-tenancy, but offer limited optimization for applications
with well-defined behavior. Shared data structures in parallel
programs are oftentimes divided into distinct phases of read-only,
write-only, or append-only, where each process owns a non-
overlapping partition of the shared memory for its lifetime. This
well-defined nature presents opportunity to eliminate communi-
cation overheads and reduce data movements. While coherence
in MegaMmap is mainly the responsibility of the application
programmer using synchronization points such as barriers and
locks (similar to any MPI or PGAS program), transactions further
allow programmers to capture various common access patterns
between these points (shown in Figure 3) via transactions to
optimize communication and data movement costs.
Read / Write Local: In this case, all processes interact with
nonoverlapping regions of the DSM. By nature, the caches
will be coherent across machines for both operations. During
mutable array index operations, the transaction will track the
set of pages that were modified. During evictions or flushing
operations, the page modifications will be copied to the runtime
and processed. Only the parts of the page that were modified
will be transferred, ensuring that two processes modifying
different parts of the same page do not conflict. An example
of this access pattern is matrix transpose and multiplication.
These operations are embarrassingly parallel, but are oftentimes
intermediate steps in a more complex program that may require
a different access pattern in the near future.
Read Only Global: This is common for analysis programs such
as machine learning and deep learning. In this case, data is
never modified, and no process connected to the shared memory
will modify the data. In this case, MegaMmap allows the data to
be replicated in both the pcache and scache. This improves data
availability and reduces I/O and networking costs by allowing
data to be placed near the process requiring the data.
Write and Append Only Global: This is common in many
programs, including analysis, inference, and simulation. Gray-
Scott [49], for example, is a simulation that models the reaction
between chemicals that iteratively modifies concentration
values in a 3-D grid. Alternatively, in DBSCAN [50], a k-d
tree is created by appending samples to the left and right
branches based on a split point. In these cases, MegaMmap
leverages properties of the runtime’s scheduling system to ensure
consistency. During page eviction, MemoryTasks are constructed
and scheduled in the runtime. The runtime internally ensures
the tasks are ordered and that the data operations defined in
the MemoryTask run to completion before the next begins.



Read, Write, and Append Global: This case is less common in
HPC, but comes up frequently in Cloud workloads. A key-value
store, for example, may incur writes and reads to the same region
simultaneously. MegaMmap handles this case the same as the
write/append case. When the MegaMmap transaction spans only
a single page, strong consistency and atomicity are guaranteed
across simultaneous reads and modifications since MemoryTasks
will be hashed to the same worker and processed in sequence.
Transactions spanning across several pages will have to use syn-
chronization primitives, including locks and barriers, to guarantee
correctness – although in many cases this explicit synchronization
can be avoided by simply setting a large enough page size.
Collective: In cases where a memory region is going to be
accessed by several processes, any of the above access patterns
can be marked as collective to allow MegaMmap to improve
scalability. A communicator can be passed indicating the set
of processes accessing the region. Memory accesses will follow
a tree-based pattern to avoid overloading a single node, similar
to allgather operations in MPICH [51], [52].
Changing Phases: A MegaMmap vector’s access pattern may
change throughout the lifetime of a program. For example, in
DBSCAN, the k-d tree construction algorithm first divides a root
sample by a split point into left and right append-only samples.
After all processes have finished splitting their root sample, the
left and right samples are then only ever read from. MegaMmap
supports phases through synchronization primitives such as
barriers. If a region changes from read-only to write-only, all
replicas produced during reads will be invalidated.
Reducing Data Movement Through Configurable and
Partial Paging: Fixed pages sizes are restrictive, and can
result in I/O amplification if the page size is too large or poor
access patterns if the page size is too small. Users can choose
a custom page size for a particular MegaMmap vector. Vectors
do not need to have the same page sizes, but the page size
for a particular vector will be equivalent across processes and
immutable after the creation of the vector. In addition, since
transactions indicate the exact regions of memory that will be
accessed, it is possible to know in advance the regions of the
page that will be accessed. This allows MegaMmap pages to
contain only the fragments of data needed during a page fault.

D. Masking I/O Stalls with Informed Tiered Data Movement
Policies

Modern memory-centric HPC and Cloud workloads, including
simulation and machine learning, are bottlenecked by the cost of
data movement speeds resulting from both the Memory Wall [6]
and I/O Bottleneck [7]. Traditional DSMs do not consider the
complexity of tiering and require a large, expensive data copy
in order to persist data. While DMSH tiering policies have been
provided in I/O buffering platforms, they are tailored to workloads
where I/O and memory are treated as separate and are typically
optimized for bursty producer-only [7], [53] and repetitive read
workloads [42] by leveraging statistics and machine learning
to guess I/O intention. Unlike existing tiering methodologies,
MegaMmap incentivizes applications to specify their access intent
through a transactional memory API, offering the opportunity to
provide well-informed data placement decisions. While this may
appear as an imposition to users, many distributed and out-of-core
algorithms are already structured to accomplish this, as they typi-
cally operate over large, well-defined subsets of out-of-core data
between synchronization points, such as barriers and locks [17].

Data Prefetching: With advance knowledge of the subsets of
data being accessed on each iteration, significant performance
and resource utilization benefits can be made. In Algorithm 1,
MegaMmap’s prefetcher is shown. The prefetcher takes as input
the maximum amount of memory that the MegaMmap’d region
can occupy (V ec.Max), the current amount of data in the region
(V ec.Cur), the page size (V ec.PageSize), the minimum score
that can be assigned (MinScore), and the active transaction
object (Tx). The transaction object represents the expected
access pattern of the memory region. Whenever a memory access
to a MegaMmap vector is made, the transaction tail (Tx.Tail)
is incremented. Tx.Head represents the current number of
memory accesses that have been acknowledged by the prefetcher.

When invoked, the prefetcher determines the set of pages that
can be evicted. This is done by determining the set of pages that
will not be accessed in the near future. First, all pages that have
already been touched (pages between Tx.Head and Tx.Tail)
will be marked with a score of 0. All pages that are expected to be
touched and could be stored in the vector if it were empty (pages
between Tx.Tail and Tx.Tail+V ec.Max/V ec.PageSize)
will be marked with a score of 1. Any page with a score of
zero between Tx.Head and Tx.Tail will be evicted. Note that
certain transactions (e.g., random) may touch a page several
times. The scores between Tx.Head and Tx.Tail may not
be 0 if a page is expected to be retouched.

After this, the prefetcher will begin scoring future pages. Pages
that can fit in the current amount of space available in the pcache
will be marked with a score of 1 (pages between Tx.Tail and
Tx.Tail+(V ec.Max−V ec.Cur)/V ec.PageSize). All pages
that will be accessed soon, but cannot fit in the pcache, will be
marked with a score proportional to the minimum amount of time
before a page fault could occur. This is calculated by summing
the amount of time it theoretically would take to read a page from
the scache considering the bandwidth of the tier it is currently
located on. When setting the score of a page, the ID of the node
setting the score is also propagated to improve the locality of data.
Data Organization: The Data Organizer is responsible for
interpreting the scores supplied by the prefetcher. Score updates
to the same page will all be hashed to the same worker.
Periodically (configurable by the user) the Data Organizer
interprets the scores and determines the node and tier where
data should be placed. Each tier is assigned a score based on
its performance characteristics, where tiers with a score closer
to 1 have high I/O performance. The organizer will first attempt
to place pages in the fastest tiers if there is available capacity.
Pages with lower scores in a tier will be prioritized for eviction
to make space for higher-scoring data. If a node sets a high
score for a page, the organizer will store the page on that node.

E. Implementation Details
MegaMmap was implemented in 5K lines of C++ code.

MegaMmap utilizes Hermes [7], which is a hierarchical
buffering platform, to provide basic infrastructure for enacting
data movement policies and provide metadata management
to locate data in the DMSH. We extended Hermes to support
low-latency I/O NVMe devices through the SPDK [54] and
traditional libc mmap and memcpy for upcoming CXL devices.
In addition, we augment Hermes to have an extensible data
staging layer and support staging for several I/O libraries,
including HDF5 1.14 [55] and parquet [56]. Hermes uses Mochi
thallium [57] to support low-latency RDMA transfers.



Algorithm 1 Private Cache Prefetcher

1: function PREFETCHER(V ec, Tx, MinScore)
2: Evict(V ec,Tx)
3: Prefetch(V ec,Tx,MinScore)
4: Tx.Head=Tx.Tail
5: end function
6: function EVICT(V ec, Tx)
7: N=V ec.Max/V ec.PageSize
8: for Page in Tx[Tx.Head,Tx.Tail) do
9: Page.SetScore(0.0,V ec.NodeId)

10: end for
11: for Page in Tx[Tx.Tail,Tx.Tail+N) do
12: Page.SetScore(1.0,V ec.NodeId)
13: end for
14: EvictIfZeroScore(Tx[Tx.Head,Tx.Tail))
15: end function
16: function PREFETCH(V ec, Tx, MinScore)
17: BaseT ime=0
18: N=(V ec.Max−V ec.Cur)/V ec.PageSize
19: for Page in Tx[Tx.Tail,Tx.Tail+N) do
20: T =Page.GetT ier()
21: BaseT ime+=Page.GetSize()/T.BW
22: end for
23: EstT ime=BaseT ime
24: Score=1.0
25: while Score>MinScore do
26: Page=Tx[Tx.Tail+N ]
27: T =Page.GetT ier()
28: EstT ime+=Page.GetSize()/T.BW
29: Score=EstT ime/BaseT ime
30: Page.SetScore(Score,V ec.NodeId)
31: N=N+1
32: end while
33: end function

Minimizing Indexing Overhead: To avoid hashtable lookups on
every memory access, the page that was last accessed is checked
first. This is because many algorithms iterate over a page in
its entirety. On average, reading from MegaMmap vectors adds
two integer operations and a conditional statement as overhead
to a typical memory access (std::vector). We found that this
overhead is minor (≈5%) compared to a typical memory access
in an iterative workload that multiplies a matrix by a scalar.

IV. EVALUATIONS

A. Experimental Methodology

1) Hardware: All tests were conducted on a research cluster,
designed to support a hierarchical storage architecture. The
cluster consists of storage and a compute rack, each having
32 nodes. The two racks are interconnected by two isolated
Ethernet networks (one of 40Gb/s and the other 10Gb/s), with
RoCE enabled. Each compute node has a dual Intel(R) Xeon
Scalable Silver 4114 with 24 cores and 48 threads, 48 GB RAM,
128GB NVMe PCIe x8 drive, 256GB SSD drive, and 1TB HDD.

2) Software: In several of our experiments, we use the MLlib
library of Apache Spark 3.4.1 [19] as a comparison. Spark is

largely designed for Cloud environments, where fault tolerance
is a primary design goal. To make our comparisons fair, we
disable all fault tolerance features to ensure no unnecessary data
replication occurs. For MPI-based applications, we use mpich
3.4.3. We do not compare against published DSM solutions
such as Grappa, HotPot, and Microsoft A1. This is because
Grappa is now deprecated, A1 is not publicly available, and
HotPot is designed assuming a particular hardware and software
configuration incompatible with our available testbed, including
a specific network fabric, drivers, and Linux 3.11.0. We run
each experiment 3 times and report the average.

To demonstrate the performance and programmability of
MegaMmap, we implemented and verified several real-world
machine learning and simulation applications. Each algorithm
was verified by comparing their outputs on several datasets to
their published counterparts. We measure code volume in terms of
LOC using cloc [58], which ignores visual spaces and comments.
We also provide an overview of the behavior of these algorithms
in terms of their data movement patterns. Each of these algorithms
can be parallelized using an arbitrary number of processes p.

KMeans RF DBSCAN Gray-Scott

MegaMmap 589 C++ 403 C++ 748 C++ 282 C++

Original 1009 Scala/Py 710 Scala/Py 1518 C++ 407 C++

Fig. 4: MegaMmap code 45% - 2x smaller. In each case, all I/O
partitioning, I/O compatability, and most messaging is removed.

KMeans: KMeans is a foundational and widely-used clustering
algorithm that groups data into k spherical clusters. We
implement a custom version of KMeans∥ [59], which is the same
algorithm used in Apache Spark [60]. KMeans∥ initially divides
the dataset evenly among each process and then performs several
sequential, read-only iterations over the dataset to determine the
initial and final centroids, resulting in approximately 2∗log(n)
iterations for the entire algorithm to converge. After this, data
points are assigned to centroids. The assignments are persisted
automatically using a file-backed MegaMmap.
Density-based Scanning (DBSCAN): DBSCAN is another
important clustering algorithm that identifies arbitrarily-shaped
clusters by separating points based on a given distance ϵ. We im-
plement custom versions of µDBSCAN [50]. Initially, DBSCAN
constructs a k-d tree, which is a decision tree that splits the dataset
by axis. At the first iteration, the dataset is split evenly among the
processes. The median and entropy is estimated per-axis using
a small, random subsample. The axis with the largest entropy is
chosen, and each process divides the dataset into two fractions:
left and right of the median. Processes are then partitioned to
handle the subsets. This recursion terminates when all points in
the subsample have a distance within ϵ of the median or when the
sample is smaller than min pts. Now that each points belongs
to a µcluster (set of points in a leaf), the µclusters can be merged
in parallel to form the full clusters, which are then persisted.
Random Forest: Random Forests (RFs) are commonly used
by data scientists for modeling complex, nonlinear associations
in data and providing an indication of feature importance
for dimensionality reduction techniques [61]. We implement
a custom version of RF. Initially, each process performs
out-of-order bagging (oob) on N/(oob∗p) randomly-selected
samples, where N is the overall dataset size and oob is the
number of bags to generate. Each oob iteration measures the



entropy (Gini impurity) of each feature in a chosen feature
subset. The per-process oob results are then aggregated to
find the feature maximizing entropy. A point is then randomly
selected from the dataset and used as the split point. The dataset
and processes are then divided into two partitions: left and
right. The recursion continues until either the maximum depth
(max depth) of the tree is reached or the entropy difference
is below a threshold. The algorithm repeats num trees times.
Gray-Scott: The Gray-Scott reaction-diffusion model [8] is a
system of partial differential equations that captures the dynamic
interactions between two chemical species U and V , and holds a
pivotal position in the realms of biology, chemistry, and physics.
We implement a custom version of Gray-Scott [8] in 300 lines
of code. Initially, a grid of volume L3 is defined and evenly
subdivided among each process. Each cell in the grid contains
the concentrations of U and V at time step T. At each iteration,
the concentrations are updated and exchanged between processes,
transferring approximately 24∗(L/p)2 bytes of data per process.
After a certain number of iterations (plotgap), the grid of size
O(L3) is checkpointed. The algorithm repeats steps times.

3) Datasets: To evaluate the performance of KMeans
and DBSCAN, we use datasets produced by Gadget 4 [62],
which is a parallel cosmological N-body and SPH code that
simulates cosmic structure formations and calculations relevant
for galaxy evolution and galactic dynamics. Several works
cluster and model the outputs produced by this simulation to
locate halo formations [50], [63] and identify the importance of
cosmological features. We include the exact parameters in the
AD appendix. The final output data is stored in an HDF5 file
containing 3D floating-point particle positions and velocities.
To evaluate Random Forest, these values are taken as input and
used to predict output clusters. 80% of the original dataset was
used for training and 20% for testing using a stratified random
sampling that takes 80% of each cluster.

4) Objectives: This evaluation plan aims to demonstrate :
1) Memory coherence of DSMs are not a scalability bottleneck

compared to leading HPC+Cloud communication solutions,
such as MPI and Spark.

2) Tiering memory can increase the resolution of scientific
datasets by eliminating memory constraints, allowing more
detail in the final simulation data.

3) Intelligently tiering memory can bring performance benefits
to out-of-core algorithms.

4) DRAM consumption can be lowered by offloading memory
to tiered storage.

B. Experimental Results
1) Scalability of DSMs for HPC: In this evaluation, we demon-

strate the scalability of MegaMmap for in-memory workloads
compared to alternative approaches. This exercises the basic
communication, coherence, and latency overheads of MegaMmap.
To do this, we perform a weak scaling study that compares
MegaMmap-based algorithms to the algorithms in the original
work. All tests use datasets that allow competing algorithms to
maintain all data (including copies) entirely in DRAM. In these
evaluations, MegaMmap is configured with no optimizations
enabled and only uses memory. For KMeans, we use a dataset of
size 2GB per node, k=8 with a maximum of 4 iterations. We
use the same dataset for DBSCAN and use ϵ=8 and min pts=
64. For Random forest, we use a dataset of size 128M per node
and produce 1 decision tree with max depth=10. Gray-Scott

is configured to produce 16GB of data per node (L = 784
for 1 node, L = 1920 for 16 nodes) and does not perform
checkpointing (plotgap= 0). For each algorithm, we run 48
processes (or threads) per node, for a maximum of 768 processes.
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Fig. 5: Weak scaling study of MegaMmap vs alternative
application designs, where datasets fit entirely in memory.
MegaMmap performs competitively to MPI and as much as 2x
faster than Spark.

Overall, from Figure 5, it can be observed that MegaMmap-
based algorithms scale and perform competitively to state-of-
practice parallel programming approaches. For Spark, perfor-
mance was as much as 2x faster. This was partially due to imple-
mentation details, including its use of the slower TCP protocol
and Java Runtime. However, more importantly, Spark creates
several copies of the dataset when initially loading data from the
backend and during the map/reduce phases. We also found that
Spark used 3-4x the amount of DRAM than MegaMmap-based
algorithms. For DBSCAN and Gray-Scott, MegaMmap performs
similarly to the MPI-based implementation showcasing the
scalability of MegaMmap’s memory coherence algorithms. Both
DBSCAN and MegaMmap stage the datasets entirely in DRAM
at the beginning of the program and largely reuse the same
portions of the dataset, so there is little benefit to prefetching.
Gray-Scott performs synchronous memory-to-memory commu-
nication, which MPI excels at and MegaMmap matches. This is
because the coherence algorithms in MegaMmap do not spawn
flurries of latency-sensitive requests for replica invalidation like
traditional DSMs [16]. While DSMs have been traditionally
discarded for abstracting distributed memory in HPC due to
coherence overheads, it can bee seen that MegaMmap’s coherence
policies offer competitive performance to modern HPC and Cloud
approaches for programming distributed memory systems.

2) Increasing Dataset Resolution: In this evaluation, we
demonstrate the impact of tiering memory and storage for
increasing dataset resolution, measured by the total dataset size.
To do this, we run Gray-Scott to produce grids of varying size.
We vary the grid size between L= 2048 and L= 3456. We
compare the MPI-based implementation for various I/O backends
(OrangeFS [64], tiered filesystem Assise [43], and tiered I/O
buffering system Hermes [7]) vs MegaMmap in terms of dataset
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Fig. 6: Increasing the resolution of Gray-Scott through tiering.
After L=2688, MPI-based Gray-Scott crashes due to memory
overutilization. MegaMmap is unbounded, and can run simula-
tions as large as L=3456, producing 2x the simulation data
of L=2688. It’s also at least 20% faster than other tiered I/O
systems due to effective asynchronous data movement.

size and memory utilization. L=2048 produces a 38GB dataset
(2.5GB per node), while L=3456 produces a 1.5TB dataset
(96GB per node). For MegaMmap, the tiers are configured such
that there is 48GB of DRAM and 128GB of NVMe per node,
which fits the entire dataset at a scale of L=3456.

Overall, from Figure 6, it can be seen that MegaMmap
performs at least 20% faster than all versions of Gray Scott until
L=2688. This is because MegaMmap places data during the
first compute phase, while all others must wait for this phase to
complete. Additionally, MegaMmap’s data movement algorithms
have advanced knowledge of memory access patterns, leading to
improved placement decisions. After L=2688, memory is fully
utilized. For the MPI-based version, the default behavior of Linux
is to terminate programs overutilizing memory, so L=2688 is the
point at which science can no longer progress. However, through
MegaMmap, we are able to conduct experiments as high as
L=3456, resulting in over 2x the information of L=2688 and
double the capacity of main memory. This is because MegaMmap
leverages the node-local NVMes to enlarge effective memory
capacity. Currently, state-of-practice solutions limit science to
the boundaries of main memory. MegaMmap eliminates this
boundary by automatically tiering memory with storage, allowing
memory-constrained scientific problems to become feasible.

3) Performance and Cost Benefits of Persistent Tiered
Memory: In this evaluation, we demonstrate the performance
impacts of expanding the memory hierarchy to storage for
persistent datasets that do not fit trivially in DRAM. To do
this, we run Gray-Scott to generate an out-of-core grid. We set
L=3456, the maximum size used in the previous experiment, and
run 768 processes (16 nodes). The grid size is a total of 1.5TB
(96GB per node) and is flushed every step (plotgap=1). We run
5 steps, generating a total of 8TB of data (480GB per node). We
compare various compositions of the DMSH for handling the
placement of this dataset, spanning between NVMe, SSD, and
HDDs. We also measure the financial cost of tiering strategies
by multiplying utilized storage by $/GB, which we estimate
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Fig. 7: Tiering study of MegaMmap for 768-process Gray-
Scott. D=DRAM, H=HDD, S=SATA SSD, N=NVMe. The
number indicates the amount of storage per-node given to the
program (e.g., 48D means 48GB DRAM per node). MegaMmap
improves performance as much as 1.8x by using NVMe. However,
performance is related closely to cost.

from retailers such as Amazon. We found that HDDs are roughly
.02 $/GB, SATA SSDs are .04$/GB, and NVMes are .08$/GB.

Overall, from Figure 7, it can be observed that deepening the
memory hierarchy to include storage tiers can greatly improve
overall application performance. In this case, Gray-Scott
performs a write-intensive workload, where a large grid is
modified and persisted on every step. MegaMmap overlaps
computation with data movement leveraging the asynchronous
behavior of the write/append only cache coherence policy when
modifying the grid and the asynchronous data staging engine
when persisting the data during checkpoints. Individual data
movements are accelerated by allowing data to reside on faster
storage tiers. This data is aggressively demoted to lower tiers
by the data organizer to make room for future incoming data.

At the baseline, MegaMmap leverages slow, high-volume
storage (HDDs) to handle memory overflow, incurring significant
I/O penalties and experiencing the slowest overall performance.
As we add high-performance storage, this trade-off changes.
With 16GB of NVMe and 32GB of SSD per-node, performance
improves 1.5x over the baseline as the dataset doesn’t
immediately touch the HDDs, which are 6-10x slower than the
SSD and NVMe. When increasing the amount of NVMe to
32GB, performance improves an additional 20%. When using
only DRAM and NVMe, performance is overall 1.8x faster
than the baseline. Though, in terms of cost, 48D-48S has 1.5x
improvement over 48D-48H at half the financial cost of 48D-48N.
By expanding memory to high-performance storage, MegaMmap
allows applications to transparently stage data in accelerated
storage and avoid costly synchronous disk seeks, providing
substantial performance benefits when data doesn’t fit entirely
in DRAM. Even cheaper hardware can result in significant
performance benefits compared to HDD-only solutions.

4) Lowering DRAM Consumption: In this evaluation, we
measure the performance impacts of reducing DRAM consump-
tion using optimal configurations of MegaMmap. To do this, we
generate datasets for each application and then vary the maximum
DRAM capacity. The datasets are generated using Gadget and
are 1TB in size (32GB per node). We run KMeans and DBSCAN
to first analyze the datasets produced by Gadget. We use k=8
with a max iter=4 for KMeans. For DBSCAN, we use an
ϵ=8 and min pts=64. The cluster assignments are stored in
a binary file. RF analyzes this data and produces 1 decision tree
with a max depth=10. For Gray-Scott, we set L=3128, also
producing 1TB. Each application is executed with 1536 total
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Fig. 8: Memory scaling study of MegaMmap. Each program
has 1536 processes over 32 nodes. Through intelligent tiering,
DRAM can be lowered as much as 2.6x while maintaining
competitive (within 10%) performance of full DRAM capacity.

processes (32 nodes). We vary the amount of DRAM being used
for each program type. All overflowing data will fit in NVMe.

Overall, from Figure 8, it can be observed that each of the
algorithms execute with nearly the same performance even with
just half the main memory, demonstrating that MegaMmap can ef-
fectively overlap data movements with computation. KMeans can
use 2.6× less DRAM while DBSCAN and RF can use 2× less
DRAM with minimal performance overhead. This result is largely
due to the effectiveness of asynchronous prefetching and eviction.
KMeans, RF, and DBSCAN iterate over portions of the dataset
highly predictably, where KMeans is mostly sequential while RF
and DBSCAN are more pseudo-random. This allows MegaMmap
to evict pages that have been touched during data-intensive
computations and predict the pages that will be accessed next. In
the case of Gray-Scott, which can also use 1.6× less DRAM, this
result is largely due to asynchronous writes and flushing. Data is
initially placed in the fastest tier with available capacity, and then
aggressively flushed down to lower tiers. After a certain point,
each of the programs incur significant overheads due to frequent
synchronous page faults and I/O stalls caused by frequent spills
to NVMe, resulting in performance degradation of as much as
2.5×. Overall, this evaluation demonstrates that achieving high
performance for memory-centric, data-intensive problems can
be accomplished without increasing DRAM capacity through
intelligent use of storage tiering and asynchronous behavior.

V. DISCUSSION & LIMITATIONS

Node Failure: Currently, MegaMmap assumes that the nodes
are reliable and that the application would fail anyway if a
node were to go down. If a node were to fail, the entire DSM
would be corrupted. However, the MegaMmap runtime could
be extended to support reliabilty and fault tolerance by
implementing replication [65].
Security: Utilizing persistent storage to store temporary
information can result in security concerns. If the data being
analyzed is classified, the DSM must buffer data with the same
level of access as the original content. This protection can be
accomplished by changing the access control permissions of
data within the MegaMmap runtime. [66].

Memory Corruption: Applications may encounter a situation
where hardware stores data incorrectly. Bit flips in DRAM
are not uncommon [67], and there are algorithms such as error
correcting codes [67] that MegaMmap could implement to
ensure that data remains correct.
Accelerator APIs: As the variety of accelerators such as
FPGAs and GPUs continue to rise, software support must be
provided. We designed MegaMmap with such abstraction that it
could be easily extended to offer coherent access to distributed
memory and storage from within accelerators.
Multi-Tenancy: MegaMmap is designed to run within an HPC
job – where a single phase of a workflow runs. For this reason,
we do not explore the effects of multi-tenancy in this work,
as only one application accesses the DSM at a time. In the
future, we intend to expand the shared cache design to consider
multi-tenant DSMs and contention mediation.
Legacy Applications and Language Support: MegaMmap is a
library (similar to MPI and PGAS) designed to leverage language
features, specifically operator overloading, to accomplish a
friendly DSM interface. Any language supporting this (e.g.,
Python, Julia, C#, Rust) can implement a similar API. C
programs can typically switch to a C++ compiler to use
MegaMmap. To adapt an existing program to MegaMmap,
only the data structures that are too large to fit in memory
need to be converted. Accesses to these vectors would also
have to be updated to use transactions. This can vary in time
and complexity based on the volume and complexity of the
original code. As future work, we intend to explore compiler
extensions to allow MegaMmap to be embedded automatically
into applications, which would better support legacy programs.

VI. CONCLUSION

In this work, we address the issues facing distributed, memory-
centric out-of-core algorithms through the design and implementa-
tion of MegaMmap, a software DSM that enlarges effective mem-
ory capacity through intelligent tiered DRAM and storage man-
agement. We demonstrate that the complexity of developing out-
of-core algorithms can be reduced by enabling massive persistent
datasets to be presented as memory objects while transparently
managing data placement and space utilization. We showcase
how expanding memory tiering to high-performance storage can
be used to both improve performance and dramatically reduce
the need for DRAM in parallel workloads. We demonstrate
how leveraging a transactional memory API can be used to
reap substantial benefits in tiering performance. Evaluations
showcase that developing algorithms with MegaMmap reduces
peak memory utilization by as much as 2.6× compared to leading
solutions while accomplishing similar or better performance.

VII. ACKNOWLEDGEMENT

The material presented is based upon work supported by
the National Science Foundation (NSF), Office of Advanced
Cyberinfrastructure, under Grants CSSI-2104013 and Core-
2313154. Additionally, this work is partially supported by the
U.S. Department of Energy (DOE), Office of Science, Office
of Advanced Scientific Computing Research, under Contract
and DE-SC0024593. We would like to thank the Chameleon
testbed, supported by the NSF, for providing an environment
for development and debugging.



REFERENCES

[1] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The contributions of this work are as follows:
C1 A durable, persistent, and intuitive Distributed

Shared Memory (DSM) system, which significantly
reduces out-of-core development complexity by al-
lowing applications to present massive datasets as
memory objects.

C2 A user-driven transactional memory access API,
which leads to improved decision-making in cache
coherence and data organization policies by propa-
gating memory access intent.

C3 A comprehensive set of intent-aware memory co-
herence policies, which improves the latency and
bandwidth of memory accesses based on workload
characteristics.

C4 A wide variety of tiered data organization policies,
which minimize I/O stall times by leveraging hetero-
geneous storage hardware and advance knowledge of
access pattern intent.

B. Computational Artifacts

There is only one artifact. All evaluation figures were
produced (and can be reproduced) from this artifact.

A1 https://github.com/grc-iit/mega mmap

Artifact ID Contributions Related
Supported Paper Elements

A1 C1-C4 Figures 4 - 7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact contains the MegaMmap runtime, library, and
developed applications. LOC measurements from this repo’s
benchmark directory were used for proving C1. The ap-
plications in the benchmark directory are used to evaluate
components of MegaMmap in challenges C1 - C4. There are
4 applications: KMeans, DBSCAN, Gray-Scott, and Random
Forest.

Expected Results

C1 Each application in the benchmark directory should
be between 300 - 600 LOC, demonstrating intuitive-
ness. There are 4 applications: KMeans, DBSCAN,
Gray-Scott, and Random Forest.

C2,3 When running the applications on workloads that
fit entirely in main memory, the only overhead in
MegaMmap is caused by cache coherence informed
by the transaction API. It should be seen that

MegaMmap-based algorithms perform at least as
well as MPI-based versions and better than Spark,
demonstrating that transactions can be used to make
cache coherence overheads minimal compared to
state-of-practice approaches.

C2,4 When running the applications on workloads where
the dataset does not fit entirely in memory,
MegaMmap’s transaction-informed tiering policies
are showcased. It should be seen that the applications
do not require full memory utilization to accomplish
peak performance due to intelligent data movement.
It should also be seen that performance improves
when data can fit entirely in high-performance stor-
age and never spills to disk. This shows that trans-
actions can be used to effectively overlap I/O stall
times with computation, minimizing data movement
overheads.

Expected Reproduction Time (in Minutes)

Artifact Setup: The artifact should compile and install within
30 minutes – it has several dependencies. We provide scripts
in the form of YAML files that define the exact parameters of
experiments. These are included under the test/iter-pipelines
directory.
Artifact Evaluation:

1) MegaMmap-based KMeans with a dataset size of 4GB
per node takes roughly 100 seconds. For 32GB it took
roughly 8 minutes.

2) MegaMmap-based DBSCAN with a dataset size of 4GB
took roughly 130 seconds. For 32GB it took roughly 10
minutes.

3) MegaMmap-based Random Forest with a dataset size of
4GB per-node takes roughly 150 seconds. For 32GB it
took roughly 13 minutes.

4) MegaMmap-based Gray-Scott that generated 16GB per
node took roughly 2.5 minutes. For 32GB it took
roughly 6 minutes.

The overall execution of our evaluation was roughly 16
hours, since applications were executed numerous times and
with many different configurations.
Artifact Analysis: The analysis is a matter of seconds, requir-
ing only the summarization of small CSV files containing a
few hundred entries of runtime, CPU utilization, and memory
utilization statistics.

Artifact Setup (incl. Inputs)

Hardware: All tests were conducted on a research cluster,
designed to support a hierarchical storage architecture. The
cluster consists of storage and a compute rack, each having
32 nodes. The two racks are interconnected by two isolated
Ethernet networks (one of 40Gb/s and the other 10Gb/s), with
RoCE enabled. Each compute node has a dual Intel(R) Xeon
Scalable Silver 4114 with 24 cores and 48 threads, 48 GB



RAM, 128GB NVMe PCIe x8 drive, 256GB SSD drive, and
1TB HDD.

Software:
1) MegaMmap: Currently the master branch. Url: https://

github.com/grc-iit/mega mmap DOI: https://doi.org/10.
5281/zenodo.13329688

2) Hermes: We use Hermes 1.2.1. Url: https://github.com/
HDFGroup/hermes Tag: https://github.com/HDFGroup/
hermes/releases/tag/v1.2.1

3) Jarvis-CD: Currently the master branch. Url: https:
//github.com/grc-iit/jarvis-cd Tag: https://github.com/
grc-iit/jarvis-cd/releases/tag/v1.0.0

4) Apache Spark: We use version 3.4.1. Url:
https://archive.apache.org/dist/spark/spark-3.4.1/
spark-3.4.1-bin-without-hadoop.tgz

5) MPICH: We use version 3.4.3. Url: https://www.mpich.
org/static/downloads/3.4.3/mpich-3.4.3.tar.gz

6) Gadget4: We use commit
a3270b2ce91067af4045ac8a68398a12ede70b85. Url:
https://gitlab.mpcdf.mpg.de/vrs/gadget4

Datasets / Inputs: Datasets can be generated using the
Gadget4 simulator or our internal kmeans dataset generator
(included in github), which outputs data in a similar format to
Gadget and can be used to accelerate reproducability. While
Gadget4 was used for the datasets, its setup is far more
complex. The use of Gadget4 was not for performance reasons,
but to demonstrate that MegaMmap can be used in realistic
workflows and datasets.

We used two main datasets during our evaluation:
1) 64GB Gadget4 simulation (for Evaluation 1)
2) 1TB Gadget4 simulation (for Evaluation 4)
Installation and Deployment: MegaMmap is implemented

in C++ and requires a C++17-compliant compiler. The mini-
mum version tested is GCC 9.4.1. We use spack to automate
the installation of MegaMmap and its dependencies, including
MPICH.

Artifact Execution

We conducted 4 different evaluations of MegaMmap. To
help automate and reproduce experiments, we use a de-
ployment tool named Jarvis-CD. Through Jarvis, we provide
deployment scripts for Spark, MegaMmap, Hermes, and the
Jarvis resource monitoring tool pymonitor.

Experiments are conducted similarly to one another. The
experiments are represented as Jarvis Grid Search YAML
files (e.g., https://github.com/grc-iit/mega mmap/blob/master/
test/unit/iter-pipelines/mm kmeans spark.yaml). It defines the
order to deploy applications and the variables to tune. Each
experiment has the following general workflow:

1) The MegaMmap runtime is deployed on each node an
application is expected to run on.

2) The pymonitor tool is then deployed on each node.
Pymonitor produces a time series CSV file containing
CPU, network, and storage utilization statistics in the
background.

3) The application (KMeans, DBSCAN, Random Forest,
or Gray-Scott) is launched in parallel and executed to
completion. The runtime of the application is stored
internally in Jarvis.

4) Steps 1 - 4 repeat until all possible configurations
defined in the grid search have been tested.

5) Jarvis produces a single CSV file that, for each tested
configuration, contains the aggregated resource utiliza-
tion statistics and application runtime.

We describe the evaluations below. Each evaluation was
repeated 3 times.
Evaluation 1: Scalability of DSMs for HPC: In this eval-
uation, we demonstrate the scalability of MegaMmap for in-
memory workloads compared to alternative approaches. This
exercises the basic communication, coherence, and latency
overheads of MegaMmap. To do this, we perform a weak
scaling study that compares MegaMmap-based algorithms to
the algorithms in the original work. All tests use datasets that
allow competing algorithms to maintain all data (including
copies) entirely in DRAM. In these evaluations, MegaMmap
is configured with no optimizations enabled and only uses
memory. For KMeans, we use a dataset of size 2GB per node,
k = 8 with a maximum of 4 iterations. We use the same dataset
for DBSCAN and use ϵ = 8 and min pts = 64. For Random
forest, we use a dataset of size 128M per node and produce 1
decision tree with max depth = 10. Gray-Scott is configured
to produce 16GB of data per node (L = 784 for 1 node,
L = 1920 for 16 nodes) and does not perform checkpointing
(plotgap = 0). For each algorithm, we run 48 processes (or
threads) per node, for a maximum of 768 processes.
Evaluation 2: Increasing Dataset Resolution: In this eval-
uation, we demonstrate the impact of tiering memory and
storage for increasing dataset resolution, measured by the total
dataset size. To do this, we run Gray-Scott to produce grids
of varying size. We vary the grid size between L = 2048
and L = 3456. We compare the MPI-based implementation
vs the MegaMmap implementation in terms of dataset size
and memory utilization. L = 2048 produces a 38GB dataset
(2.5GB per node), while L = 3456 produces a 1.5TB dataset
(96GB per node). For MegaMmap, the tiers are configured
such that there is 48GB of DRAM and 128GB of NVMe per
node, which fits the entire dataset at a scale of L = 3456.
Evaluation 3: Performance Benefits of Persistent Tiered
Memory: In this evaluation, we demonstrate the performance
impacts of expanding the memory hierarchy to storage for per-
sistent datasets that do not fit trivially in DRAM. To do this, we
run Gray-Scott to generate an out-of-core grid. We set L=3456,
the maximum size used in the previous experiment, and run
768 processes (16 nodes). The grid size is a total of 1.5TB
(96GB per node) and is flushed every step (plotgap = 1).
We run 5 steps, generating a total of 8TB of data (480GB per
node). We compare various compositions of the Deep Memory
and Storage Hierarchy (DMSH) for handling the placement of
this dataset, spanning between NVMe, SSD, and HDDs. These
compositions include:

1) 48GB DRAM - 48GBHDD



2) 48GB-DRAM / 16GB NVMe / 32GB SATA SSD
3) 48GB-DRAM / 32GB NVMe / 16GB SATA SSD
4) 48GB-DRAM / 48GB NVMe

Evaluation 4: Lowering DRAM Consumption: In this
evaluation, we measure the performance impacts of reduc-
ing DRAM consumption using optimal configurations of
MegaMmap. To do this, we generate datasets for each ap-
plication and then vary the maximum DRAM capacity. The
datasets are generated using Gadget and are 1TB in size (32GB
per node). We run KMeans and DBSCAN to first analyze
the datasets produced by Gadget. We use k = 8 with a
max iter = 4 for KMeans. For DBSCAN, we use an ϵ = 8
and min pts = 64. The cluster assignments are stored in a
binary file. RF analyzes this data and produces 1 decision tree
with a max depth = 10. For Gray-Scott, we set L = 3128,
also producing 1TB. Each application is executed with 1536
total processes (32 nodes). We vary the amount of DRAM
being used for each program type between 4GB and 32GB.
All overflowing data will fit in NVMe.

Artifact Analysis (incl. Outputs)

All outputs used in experiments are stored as CSVs con-
taining the configuration of the MegaMmap system (e.g.,
storage capacity limits, number of processes, number of nodes,
etc.), the runtime of the program, average/peak memory/CPU
utilization, and standard deviations of runtime and resource
utilization. Without any additional processing, these figures
can be used to produce the figures in the evaluation.

Artifact Evaluation (AE)

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

1. Download and install Jarvis-CD, Spack, Hermes, and
Spark using deps.sh. This script assumes that you have
python≥ 3.6 and environment modules (e.g., module load):

bash deps.sh

Note that this will install Hermes with the default parame-
ters, which only works with the slower network providers
(e.g., TCP/sockets). It is difficult to automate the de-
tection of network drivers for RDMA. In deps.sh, you
will likely need to change the spack install hermes
command to include more specific configurations of lib-
fabric for your machine. For example, spack install
hermesˆlibfabric+verbs+mlx will install hermes with
RDMA for mellanox interconnects.

2. Define where Jarvis stores produced configuration files.
There are three paths that need to be defined:

• CONFIG DIR: A directory where jarvis metadata for
pkgs and pipelines are stored. This directory can be any-
where that the current user can access. E.g., ${HOME}
/jarvis-conf.

• PRIVATE DIR: A directory which is common across all
machines, but stores data locally to the machine. Some
jarvis pkgs require certain data to be stored per-machine.
OrangeFS is an example. E.g., /tmp/jarvis-priv

• SHARED DIR: A directory which is common across all
machines, where each machine has the same view of data
in the directory. Most jarvis pkgs require this, but on
machines without a global filesystem (e.g., Chameleon
Cloud), this parameter can be set later. In a typical HPC
site, this would be somewhere in your home directory.
E.g., ${HOME}/jarvis-shared

To define the paths, run the following:

jarvis init \
[CONFIG_DIR] \
[PRIVATE_DIR] \
[SHARED_DIR (optional)]

3. Define a resource graph for your machine. The resource
graph defines the network and storage configuration, including
paths and such. It is a YAML file with the following format:
fs:
- avail: 500g
dev_type: ssd
device: null
fs_type: null
host: null
mount: ${HOME}/jarvis_data
rota: null
shared: false
tran: ''



net:
- domain: lo
fabric: 127.0.0.1/32
host: null
provider: sockets
shared: false
speed: 1G

There should be an entry for each storage device and
network you plan to use. You can discover networks using
the fi info tool provided by libfabric, which is a dependency
of megammap.

4. Register MegaMmap in Jarvis

cd /path/to/mega_mmap
jarvis repo add test/jarvis_mega_mmap

5. Load and cache the megammap environment in Jarvis.
The following commands will store a snapshot of all relevant
environment variables needed to execute workflow stages.

module load spark
module load arrow
spack load mega_mmap
jarvis env build mega_mmap

Artifact Execution

The experiments are defined using Jarvis workflow YAML
files (shown in test/unit/iter-pipelines). These YAML files
define the execution steps and environment setup needed to
run the experiments. To run any particular workflow file, you
can do:

jarvis ppl run yaml /path/to/workflow.yaml

Evaluation 1: Scalability of DSMs for HPC: This evaluation
spanned 8 applications. 2x KMeans, 2x DBSCAN, 2x Random
Forest, and 2x Gray Scott. These files are located under the
path: test/unit/iter-pipelines/weak scaling. These evaluations
perform a weak scaling study, where the size of a dataset and
the number of processes are varied simultaneously. To execute
the evaluations, the Jarvis-CD YAML files. The evaluator
may need to tweak these YAML files to specific machine
characteristics – particularly memory capacity and scale. They
are organized as follows:

1) mm kmeans mega.yaml: This will produce a synthetic
dataset that fits in memory, launch the Hermes runtime, a
custom monitoring program for tracking memory utiliza-
tion named pymonitor, and then launch MegaMmap’s
KMeans implementation. The number of processes and
dataset size are varied automatically as configured in this
file.

2) mm kmeans spark.yaml: This will produce a synthetic
dataset that fits in memory, launch Spark cluster, launch
pymonitor, and then launch Spark’s KMeans implemen-
tation. The number of processes and dataset size are
varied automatically as configured in this file.

3) mm rf mega.yaml: This will produce a synthetic dataset
that fits in memory, launch the Hermes runtime, launch

pymonitor, and then launch MegaMmap’s Random For-
est implementation. The number of processes and dataset
size are varied automatically as configured in this file.

4) mm rf spark.yaml: This will produce a synthetic dataset
that fits in memory, launch Spark cluster, launch pymon-
itor, and then launch Spark’s Random Forest implemen-
tation. The number of processes and dataset size are
varied automatically as configured in this file.

5) mm dbscan mega.yaml: This will produce a synthetic
dataset that fits in memory, launch the Hermes runtime,
launch pymonitor, and then launch MegaMmap’s DB-
SCAN implementation. The number of processes and
dataset size are varied automatically as configured in
this file.

6) mm dbscan mpi.yaml: This will produce a synthetic
dataset that fits in memory, launch pymonitor, and
then launch the MPI-based DBSCAN implementation.
The number of processes and dataset size are varied
automatically as configured in this file.

7) mm gray scott mega.yaml: This will launch the Her-
mes runtime, launch pymonitor, and then launch
MegaMmap’s Gray Scott implementation. The number
of processes and dataset size are varied automatically as
configured in this file.

8) mm gray scott mpi.yaml: This will launch pymonitor
and then launch the MPI-based Gray Scott implementa-
tion. The number of processes and dataset size are varied
automatically as configured in this file.

Evaluation 2: Increasing Dataset Resolution: This eval-
uation focuses on Gray Scott for different dataset resolu-
tions. These experiment is defined by the files in: test/unit/
iter-pipelines/df resolution. There are two:

1) mm gray scott mega.yaml: This will launch the Her-
mes runtime, launch pymonitor, and then launch
MegaMmap’s Gray Scott implementation. The resolu-
tion of the dataset L is increased for a fixed number of
processes and nodes.

2) mm gray scott mpi.yaml: This will launch pymonitor
and then launch the MPI-based Gray Scott implementa-
tion. The resolution of the dataset L is increased for a
fixed number of processes and nodes.

Evaluation 3: Performance Benefits of Persistent Tiered
Memory: This evaluation focuses on Gray Scott for different
storage hardware compositions. This experiment is defined by
the file in: test/unit/iter-pipelines/tiering. There is only one file:

1) mm gray scott mega.yaml: This will launch the Her-
mes runtime, launch pymonitor, and then launch
MegaMmap’s Gray Scott implementation. The resolu-
tion of the dataset L is fixed to produce 1.5TB of
data. The tiering strategy is varied between various
percentages of RAM, NVMe, SSD, and HDD.

Evaluation 4: Lowering DRAM Consumption: This evalu-
ation, we run each of the MegaMmap-based applications for
different DRAM capacities and offload pages to the nearest tier
of storage – in our case NVMe. These experiment is defined



by the files in: test/unit/iter-pipelines/mem scaling. There are
four:

1) mm kmeans mega.yaml: This will produce a synthetic
dataset that fits in memory, launch the Hermes run-
time, launch pymonitor, and then launch a memory-
constrained MegaMmap KMeans implementation. The
amount of memory dedicated to the algorithm is varied.
The number of processes and scale remain constant.

2) mm rf mega.yaml: This will produce a synthetic dataset
that fits in memory, launch the Hermes runtime, launch
pymonitor, and then launch a memory-constrained
MegaMmap KMeans implementation. The amount of
memory dedicated to the algorithm is varied. The num-
ber of processes and scale remain constant.

3) mm dbscan mega.yaml: This will produce a synthetic
dataset that fits in memory, launch the Hermes run-
time, launch pymonitor, and then launch a memory-
constrained MegaMmap DBSCAN implementation. The
amount of memory dedicated to the algorithm is varied.
The number of processes and scale remain constant.

4) mm gray scott mega.yaml: This will launch the Her-
mes runtime, launch pymonitor, and then launch a
memory-constrained MegaMmap Gray Scott implemen-
tation. The amount of memory dedicated to the algo-
rithm is varied. The number of processes and scale
remain constant.

Artifact Analysis (incl. Outputs)

We do not currently automate figure generation; however
the text files produced are in CSV format that can be used to
build the figures. By default, in each of the workflow YAML
files, the output data is stored in the location $(jarvispath+
shared)/output/stats dict.csv. This can be tweaked by changing
the “output” key at the bottom of each YAML. The detailed
description of the outputs are as follows:
Evaluation 1: Scalability of DSMs for HPC: For each of the
8 Jarvis YAMLs, a stats dict.csv will be created containing
the application name (e.g., KMeans-Mega), the number of
processes, the dataset size, memory utilization, and the overall
runtime of the program. It should be found that the Spark-
based algorithms take significantly longer (in our case 2x)
longer to run than the MegaMmap-based algorithms. In addi-
tion, they use significantly more memory (up to 4x) than the
MegaMMap implementation. For the MPI-based algorithms,
MegaMmap should perform similarly in terms of both memory
and runtime – demonstrating a DSM abstraction can perform
competitively to traditional HPC designs.
Evaluation 2: Increasing Dataset Resolution: For each of
the two Jarvis YAMLs defined in this evaluation, a stats
dict.csv will be created containing the application name (e.g.,
GrayScott-Mega), the number of processes (constant), the
resolution of the dataset L, the overall runtime of the program,
and the memory utilization. It should be found that the MPI-
based implementation of Gray Scott will fail after the cluster
memory is expended. MegaMmap should continue running
even after the memory is fully utilized due to intelligent page

eviction. In our case, the memory of our system was 48GB –
so after GS produced 48GB of data, only MegaMmap would
function.
Evaluation 3: Performance Benefits of Persistent Tiered
Memory: For the Jarvis YAML defined in this evaluation, a
stats dict.csv will be created containing the application name
(e.g., GrayScott-Mega), the number of processes (constant),
the tiering composition (e.g., 48G-DRAM-16G-NVMe), the
overall runtime of the program, and the memory utilization. It
should be found that SSD-based tiering is faster than HDD
(approximately 30%) and NVMe-based is faster than SSD
(approximately 15%).
Evaluation 4: Lowering DRAM Consumption: For each of
the Jarvis YAMLs defined in this evaluation, a stats dict.csv
will be created containing the application name (e.g., Kmeans-
Mega), the number of processes (constant), the overall runtime
of the program, and the memory utilization. It should be found
that decreasing memory capacity of the application effects
performance minimally. Memory should be able to be reduced
by at least 50% while incurring minimal performance loss.
Eventually, after memory is reduced too much (i.e., cut in
half or third), applications become noticeably slower.
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