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ABSTRACT
In the era of data-intensive computing, large-scale applications, in
both scienti�c and the BigData communities, demonstrate unique
I/O requirements leading to a proliferation of di�erent storage
devices and so�ware stacks, many of which have con�icting re-
quirements. In this paper, we investigate how to support a wide
variety of con�icting I/O workloads under a single storage system.
We introduce the idea of a Label, a new data representation, and,
we present LABIOS: a new, distributed, Label- based I/O system.
LABIOS boosts I/O performance by up to 17x via asynchronous I/O,
supports heterogeneous storage resources, o�ers storage elastic-
ity, and promotes in-situ analytics via data provisioning. LABIOS
demonstrates the e�ectiveness of storage bridging to support the
convergence of HPC and BigData workloads on a single platform.
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1 INTRODUCTION
Large-scale applications, in both scienti�c and the BigData com-
munities, demonstrate unique I/O requirements that none of the
existing storage solutions can unequivocally address them. �is
has caused a proliferation of di�erent storage devices, device place-
ments, and so�ware stacks, many of which have con�icting require-
ments. Each new architecture has been accompanied by new so�-
ware for extracting performance on the target hardware. Further,
to reduce the I/O performance gap, hardware composition of mod-
ern storage systems is going through extensive changes by adding
new storage devices. �is leads to heterogeneous storage resources
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where data movement is complex, expensive, and dominating the
performance of most applications [36]. For instance, machines with
a large amount of RAM allow new computation frameworks, such
as Apache Spark [72], to thrive. Supercomputers equipped with
node-local fast storage, such as NVMe drives, take scienti�c simu-
lation to new performance standards [6]. To achieve computational
e�ciency modern parallel and distributed storage systems must
e�ciently support a diverse and con�icting set of features.

Data-intensive applications grow more complex as the volume
of data increases, creating diverse I/O workloads. �us, the features
a distributed storage system is required to support also increases
dramatically in number and are o�en con�icting. For instance,
scienti�c applications demonstrate a periodic behavior where com-
putations are followed by intense I/O phases. Highly-concurrent
write-intensive workloads (e.g., �nal results, checkpoints), shared
�le parallel access, frequent in-place data mutations, and complex
data structures and formats are the norm in most High-Performance
Computing (HPC) workloads [35]. On the other hand, iterative
write-once, read-many data access, created by the popular MapRe-
duce paradigm, are the defacto pa�erns in most BigData applica-
tions [50]. Another example is the ability of an I/O subsystem to
handle data mutations. In HPC, the ability to frequently update data
forces storage systems to obey certain standards, such as POSIX,
and increase the cost of metadata operations which is projected
to limit the scalability of these systems [57]. In contrast, most
cloud storage solutions prefer an immutable representation of data,
such as RDDs [71] or key-value pairs. Finally, each application
manipulates data in a di�erent data representation (i.e., format)
spanning from �les, objects, buckets, key-value pairs, etc., which
increases the complexity of the data organization inside a storage
system. To navigate this vast and diverse set of contradictory I/O
requirements, the so�ware landscape is �lled with custom, highly
specialized storage solutions varying from high-level I/O libraries
to custom data formats, interfaces, and, ultimately, storage systems.

�e ability to seamlessly execute di�erent con�icting workloads
is a highly desirable feature. However, the tools and cultures of
HPC and BigData have diverged, to the detriment of both [56], and
uni�cation is essential to address a spectrum of major research
domains. �is divergence has led organizations to employ sepa-
rate computing and data analysis clusters. For example, NASA’s
Goddard Space Flight Center uses one cluster to conduct climate
simulation, and another one for the data analysis of the observation
data [76]. Due to the data copying between the two clusters, the data
analysis is currently conducted o�-line, not at runtime. �e data
transfer between storage systems along with any necessary data
transformations are a serious performance bo�leneck and cripples
the productivity of those systems [37]. Additionally, it increases the
wastage of energy and the complexity of the work�ow. Integrating
analytics into a large scale simulation code has been proven to
signi�cantly boost performance and can lead to more accurate and
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faster solutions. Current storage systems address interoperability
(i.e., cross-storage system data access) by adding various connec-
tors, such as IBM’s Spectrum Scale HDFS Transparency [30] and
Intel’s Hadoop Adapter [31], and/or middleware libraries, such as
IRIS [37] and Alluxio [40]. Nevertheless, be�er system support is
needed for in-transit, in-situ analysis, with scheduling being a big
challenge and node sharing impossible in existing solutions [51].
On the other hand, High-Performance Data Analytics (HPDA) [32],
the new generation of Big Data applications, involve su�cient data
volumes and algorithmic complexity to require HPC resources. For
example, Paypal, an online �nancial transaction platform, and the
US Postal Service are using HPC resources to perform fraud detec-
tion in real time on billions of transactions and mail scans. Gaining
insights from massive datasets while data is being produced by
large-scale simulations can enhance the scalability and �exibility
of exascale systems [74].

To address this divergence in storage architectures and work-
load requirements, we have developed LABIOS, a new, distributed,
scalable, and adaptive I/O System. LABIOS, a new class of a storage
system, is the �rst (data) LAbel-Based I/O System, is fully decoupled,
and is intended to grow in the intersection of HPC and BigData.
LABIOS demonstrates the following contributions:

(1) the e�ectiveness of storagemalleability, where resources
can automatically grow/shrink based on the workload.

(2) how to e�ectively support synchronous and asynchro-
nous I/O with con�gurable heterogeneous storage.

(3) how to leverage resource heterogeneity under a single
platform to achieve application and system-admin goals.

(4) the e�ectiveness of data provisioning, enabling in-situ
data analytics and process-to-process data sharing.

(5) how to support a diverse set of con�icting I/O workloads,
from HPC to BigData analytics, on a single platform, through
managed storage bridging.

LABIOS achieves these contributions by transforming all I/O
requests each into a con�gurable unit called a Label, which is a
tuple of an operation and a pointer to data. Labels are pushed from
the application to a distributed queue served by a label dispatcher.
LABIOS workers (i.e., storage servers) execute labels independently.
LABIOS architecture is fully decoupled and distributed. Using labels,
LABIOS can o�er so�ware-de�ned storage services and QoS guar-
antees for a variety of workloads on di�erent storage architectures.

2 BACKGROUND AND MOTIVATION
2.1 Parallel and Distributed File Systems
Parallel �le systems (PFS) are the dominant storage solution in most
large-scale machines such as supercomputers and HPC clusters
and are therefore well understood in the storage community. PFS
obey the POSIX standard to o�er portable guarantees and strong
data consistency. PFS manipulate data in a certain sequence of
operations, a paradigm known as streamlined I/O (i.e., Unix Standard
I/O Streams). Parallel access is achieved by shared �le handlers
and a complex system of locking mechanisms. �rough the years,
PFS have been optimized to �t the needs of typical HPC workloads.
Application development and storage system design have grown
in harmony with one driving the other since the HPC ecosystem
is relatively closed to external in�uence. However, PFS face many
limitations [29]. Some relevant to this study include:

a) Storage malleability. Existing high-performance storage solutions
are not elastic but static and cannot support power-capped I/O and
tunable concurrency control (i.e., QoS guarantees based on job size,
priority, input, output, etc.). Sudden workload variations (i.e., I/O
demand �uctuations) in distributed systems can be addressed by
resource malleability. By dynamically increasing or decreasing the
amount of storage resources allocated to an application, the system
can reduce its idle resources and therefore achieve lower energy
consumption and costs for the end user.
b) Resource utilization. Storage resources are provisioned for the
worst-case scenario where multiple jobs happen to enter their I/O-
dominant phases simultaneously leading to over/under-provisioning.
�is issue is worsened by the growing need to support storage re-
sources sharing across multiple clusters via global mounts. Further-
more, allocation exclusivity and over-provisioning due to ignorance
or malicious intent also contribute to erroneous resource utilization.
c) Hardware heterogeneity. New storage devices (e.g., SSD, NVMe,
etc.,) are being incorporated into system designs resulting in a
diverse heterogeneous storage environment. Existing solutions
cannot handle this heterogeneity since they assume homogeneous
servers. Currently, the responsibility for orchestrating data move-
ment, placement, as well as layout within and across nodes falls on
both system administrators and users [47].
d) Flexible interface. Currently, storage is tightly-coupled to cer-
tain vendor-speci�c APIs and interfaces. Even though this ensures
consistency and reliability of the storage system, it can also lead
to reduced productivity; developers either need to learn new APIs,
which limits �exibility, or, adopt new storage systems which leads
to environment isolation. Many PFS have introduced various con-
nectors to increase interoperability, but at the cost of performance.
Moreover, existing storage systems provide limited facilities for
developers to express intent in the form of I/O requirements, se-
mantics, and performance guarantees. Consequently, to achieve
good I/O performance, the level of abstraction has been raised. I/O
libraries, such as HDF5 [21] and PnetCDF [42] help alleviate this is-
sue but they also add overheads and increase the complexity of use.

In cloud environments the storage scene is di�erent. Innova-
tion is driven by the wide popularity of computing frameworks.
As a result, the cloud community has developed a wide variety of
storage solutions tailored to serve speci�c purposes. �e most pop-
ular storage solution in deployment is the Hadoop Distributed File
System (HDFS), which also follows the streamlined I/O paradigm.
�e architecture and data distribution are somewhat similar to PFS.
In HDFS, there are metadata nodes (i.e., namenodes), that are re-
sponsible to maintain the namespace, and data nodes that hold
the �les. However, it has relaxed the POSIX standard to achieve
scalability. As the Hadoop ecosystem grows, so are the storage so-
lutions around it: Hive [63] puts a partial SQL interface on front of
Hadoop, Pig [52] enables a scripting language in top of MapReduce,
HBase [12] applies a partial columnar scheme on top of Hadoop,
and HCatalog [23] introduces a metadata layer to simplify access
to data stored in Hadoop. �is diversity can o�er advantages but
also undoubtedly increases the complexity of storage. Some of the
above solutions su�er from similar limitations as PFS [68], some
others are missing critical features [39], and in general most of
them perform well for the purpose they were designed for.
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2.2 Applications’ I/O requirements
Every computing framework expects speci�c I/O requirements and
features from the underlying storage system. Scienti�c computing
for instance, relies mostly on MPI for its computations - commu-
nications and domain scientists expect POSIX, MPI-IO, and other
high-level I/O libraries to cover their I/O needs. �e existing collec-
tion of storage interfaces, tools, middleware libraries, data formats,
and APIs is deeply instilled in the community and has created a
certain mindset of what to expect from the storage stack. Table 1
shows some I/O requirements and how each storage camp, HPC
and Cloud, handles them. It also presents proposed optimizations in
the literature. Due to those di�erent I/O requirements, there is no
”one storage system for all” approach. �is is more evident in large
scale computing sites, where distributed storage solutions support
multiple concurrent applications with con�icting requirements. We
believe that future storage systems need a major re-design to e�-
ciently support the diversity of workloads and the explosion of scale.

Feature I/O requirement HPC Cloud Optimizations

Data
consistency

Data passed to the
I/O system must

be consistent
between operations.

Strong,
POSIX

Eventual,
Immutable

Tunable
consistency [65]

File
access

Multiple processes
must be able to
operate on the

same �le
concurrently

Shared
Concurrent

Multiple
replicas

Collective I/O [62],
Concurrent

�le handlers [22],
Complex locks

[17, 70, 73]

Global
namespace

Data identi�ers
must be resolved

and recognizable in
a global namespace
that can be accessed

from anywhere

Hierarchical
Directory,
Nesting

Flat

Namespace
partitioning [69],

Client-side
caching [18],

Decouple
data-metadata [57, 75],

File connectors [4, 5, 60]

Fault
tolerance

Data must be
protected against
faults and errors

Specialized
hardware,

Check-
pointing

Data
replication,

Data
partitioning

Erasure
coding [67]

Scale
Support for

extreme scales and
multi-tenancy

Few large
jobs,
Batch

processing

Many small
jobs,

Iterative

Job
scheduling,

I/O bu�ering,
Scale-out

Locality Jobs are spawned
where data is

Remote
storage

Node
local

Data
aggregations

Ease of
use

Interface,
user-friendliness

and ease of
deployment

High-level
I/O libraries

Simple
data formats

Amazon S3,
Openstack

Swi�

Table 1: Application I/O Requirements

We provide some examples of workloads that demonstrate the
growing need of a storage system that supports diverse workloads
on the same single platform.
MOTIVATING EXAMPLES OF I/O WORKLOADS:
a) CM1 (�nal output, write-intensive): CM1 is a multi-dimensional,
non-linear, numerical model designed for idealized studies of at-
mospheric phenomena [9]. CM1’s I/O workload demonstrates a
sequential write pa�ern. �e simulation periodically writes col-
lectively its results (e.g., atmospheric points with a set of features)
using MPI-IO. Data are wri�en in a binary GrADS format with
a shared �le access pa�ern. �is workload requires persistence,
fault-tolerance, and highly concurrent �le access.
b) HACC (check-pointing, update-intensive): HACC stands for Hard-
ware Accelerated Cosmology Code and is a cosmological simulation
that studies the formation of structure in collision-less �uids under
the in�uence of gravity in an expanding universe. Each process in

HACC periodically saves the state of the simulation along with the
dataset using POSIX and a �le-per-process pa�ern. Since HACC
runs in time steps, only the last step checkpoint data is needed.
�us, the I/O workload demonstrates an update-heavy pa�ern. A
major performance improvement in HACC work�ow is the addi-
tion of burst bu�ers that absorb the checkpointing data faster and
perform the last �ush of data to the remote PFS.
c) Montage (data sharing, mixed read/write): Montage is a collection
of programs comprising an astronomical image mosaic engine. Each
phase of building the mosaic takes an input from the previous phase
and outputs intermediate data to the next one. It is an MPI-based
engine and therefore Montage’s work�ow is highly dependent
on the data migration between processes. �e exchange of data
between executables is performed by sharing temporary �les in
the Flexible Image Transport System (FITS) format via the storage
system. At the end a �nal result is persisted as the �nal jpeg image.
�e I/O workload consists of both read and write operations using
either POSIX or MPI independent I/O.
d) K-means clustering (node-local, read-intensive): �is application
is a typical and widely used BigData kernel that iteratively groups
datapoints into disjoint sets. �e input datapoints can be numeri-
cal, nodes in a graph, or set of objects (e.g., images, tweets, etc.,).
Implementations using the MapReduce framework [15] remain the
most popular clustering algorithm because of the simplicity and
performance. �e algorithm reads the input dataset in phases and
each node computes a set of means, broadcasts them to all machines
in the cluster and repeats until convergence. �e I/O workload is
read-intensive and is performed on data residing on the node locally.
K-means clustering is typically I/O bound [53].

3 LABIOS
In this section we present the design, architecture, and implemen-
tation of LABIOS, a new class of a storage system that uses data-
labeling to address the issues discussed in Section 2. LABIOS is
a distributed, fully decoupled, and adaptive I/O platform that is
intended to grow in the intersection of HPC and BigData.

3.1 Design Requirements
As any distributed storage system, LABIOS is designed to be respon-
sible for the organization, storage, retrieval, sharing, and protection
of data. LABIOS also contains a representation of the data itself and
methods for accessing it (e.g., read/write). LABIOS’ main objective
is to support a wide variety of con�icting I/O workloads under a single
platform. LABIOS is designed with the following principles in mind:
- Storage Malleability. Applications’ I/O behavior consists of a

collection of I/O bursts. Not all I/O bursts are the same in terms of
volume, intensity, and velocity. �e storage system should be able
to tune the I/O performance by dynamically allocating/deallocating
storage resources across and within applications, a feature called
data access concurrency control. Storage elasticity enables power-
capped I/O, where storage resources can be suspended or shutdown
to save energy. Much like modern operating systems shut down
the hard drive when not in use, distributed storage solutions should
suspend servers when there is no I/O activity.
- I/O Asynchronicity. A fully decoupled architecture can o�er the
desired agility and move I/O operations from the existing stream-
lined paradigm to a data-labeling one. In data-intensive computing
where I/O operations are expected to take a large amount of time,
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asynchronous I/O and the data-labeling paradigm are a good way
to optimize processing e�ciency and storage throughput / latency.
- Resource Heterogeneity. �e hardware composition of the un-
derlying storage should be managed by a single I/O platform. In
other words, heterogeneity in hardware (RAM, NVMe, SSD, HDD)
but also the presence of multiple layers of storage (i.e., local �le
systems, shared burst bu�ers, or remote PFS) should be transpar-
ent to the end user. �e storage infrastructure should be able to
dynamically recon�gure itself to meet the I/O demand of running
applications and their I/O requirements. Moreover, storage �ality
of Service (QoS) guarantees are a highly desired feature that can be
achieved by e�ciently matching the supply to the I/O demand [46].
-Data provisioning. �e I/O system should be programmable (i.e.,
policy-based provisioning and management). Storage must natu-
rally carry out data-centric architectures (e.g., ActiveStorage [58],
or ActiveFlash [64]), where data operations can be o�oaded to the
storage servers relieving the compute nodes of work such as per-
forming data �ltering, compression, visualization, deduplication, or
calculating statistics (i.e., So�ware De�ned Storage (SDS)). O�oad-
ing computation directly to storage and e�cient process-to-process
data sharing can signi�cantly reduce expensive data movements
and is the pinnacle of success for data-centric architectures [54].
- Storage Bridging. �e I/O system should abstract low-level stor-
age interfaces and support multiple high-level APIs. Modern dis-
tributed computing makes use of a variety of storage interfaces rang-
ing from POSIX �les to REST objects. Moreover, existing datasets
are stored in a universe of storage systems, such as Lustre, HDFS,
or Hive. Storage solutions should o�er developers the ability to use
APIs interchangeably avoiding interface isolation and, thus, boost
user productivity while minimizing programmability errors.
3.2 Architecture

3.2.1 Data model. �e core of LABIOS storage is a Label, which
is e�ectively a tuple of one or more operations to perform and a
pointer to its input data. It resembles a shipping label on top of a
Post O�ce package where information such as source, destination,
weight, priority, etc., clearly describe the contents of the package
and what should happen to it. LABIOS’ label structure includes:
type, uniqueID, source and destination as pointers (i.e., can be a
memory pointer, a �le path, a server IP, or a network port), oper-
ation to be performed as a function pointer (i.e., all functions, user-
or pre-de�ned, are stored in a shared program repository which
servers have access to), and a collection of �ags indicating the la-
bel’s state (i.e., queued, scheduled, pending, cached, invalidated,
etc.). In essence, labels encapsulate the instructions to be executed
on a piece of data. All I/O operations (e.g., fread() or get(), fwrite()
or put(), etc.,) are expressed in the form of one or more labels and a
scheduling policy to distribute them to the servers. Labels belong to
each application exclusively. �ey are immutable, independent of
one another, cannot be reused, and can be executed by any worker
anywhere in the cluster. In contrast, labels are not a computation de-
composition (i.e., compute task), or a simple data object encapsula-
tion (e.g., RDDs ) but rather a storage-independent abstraction that
simply expresses the application’s intent to operate on certain data.

3.2.2 Overview. As it can be seen in Figure 1(a), LABIOS can be
used either as a middleware I/O library or as a full stack storage
solution. Applications can use the LABIOS library to perform I/O
using labels and take advantage of the full potential of the system.
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Figure 1: LABIOS overview.
Each label can carry a set of functions to be performed by the
storage server that executes it. For instance, an application can
push write labels and instruct LABIOS to �rst deduplicate entries,
sort the data, compress them, and �nally write them to the disk.
On the other hand, to maintain compatibility with existing systems,
legacy applications can keep their I/O stack and issue typical I/O
calls (e.g., fwrite()). LABIOS will intercept those I/O calls, transform
them into labels, and forward them to the storage servers. LABIOS
can also access data via its own raw driver that handles data on
the storage device in the form of labels. By adding more servers,
the capacity and performance of them is aggregated in a single
namespace. Furthermore, LABIOS can unify multiple namespaces
by connecting to external storage systems, a feature that allows
LABIOS to o�er e�ective storage bridging.

LABIOS o�ers high speed data access to parallel applications by
spli�ing the data, metadata, and instruction paths and decoupling
storage servers from the application, as shown in Figure 1(b). �is
decoupling of clients and servers is a major architectural choice that
enables several key features in LABIOS: the power the asynchronous
I/O, the e�ectiveness of data provisioning, and the proliferation of
heterogeneous storage resources. An incoming application �rst regis-
ters with LABIOS, upon initialization, and, passes workload-speci�c
con�gurations to set up the environment. LABIOS receives the ap-
plication’s I/O requests via the client API, transforms them, using
the label manager, into one or more labels depending mostly on the
request size, and then pushes them into a distributed label queue.
Users’ data are passed to a distributed data warehouse and a meta-
data entry is created in an inventory. A label dispatcher consumes
the label queue and distributes labels using several scheduling poli-
cies. Storage servers, called LABIOS workers, are organized into a
worker pool with a manager being responsible to maintain its state.
Workers can be suspended depending on the load of the queue cre-
ating an elastic storage system that is able to react to the state of the
cluster. Lastly, workers execute their assigned labels independently
and read/write data either on their own storage device or through
a connection to an external storage system.

3.2.3 Components. LABIOS consists of three main components
connected and con�gured together as shown in Figure 2:
1. LABIOS Client, sub�gure 2(a): �is component interacts with
the application and has three main goals: a) per-application system
initialization: register application info (i.e., ID, group name, group
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Figure 2: LABIOS internal design.

credentials and permissions), apply application-speci�c se�ings,
pre-load data from external sources (if needed), and setup LABIOS
workers. b) accept application’s I/O requests, either by intercept-
ing existing I/O calls using function call wrappers or by exposing
LABIOS API, and, c) build labels based on the incoming I/O request.

Label Manager: builds one or more labels based on the request
characteristics (e.g., read/write, size, �le path, etc.,), serializes and
publishes them to the distributed label queue. Each label gets a
unique identi�er based on the origin of the operation and a times-
tamp (in nanoseconds), which ensures the order of operations (i.e.,
this is the constraint in the priority queue). Labels are created by a
con�gurable size parameter within a range of min and max values
(e.g., min 64KB - max 4MB). �e data size parameter in each label
is the unit of data distribution in the system. An I/O request larger
than the maximum label size will be split into more labels creating
a 1-to-N relationship between request and number of labels (e.g.,
for a 10MB fwrite() and 1MB max label size, 10 labels will be
created). Any I/O request smaller than the minimum label size will
be cached and later aggregated in a special indexed label to create
a N-to-1 relationship between number of requests and label (e.g.,
for ten 100KB fwrite() and 1MB max label size, one label will
be created). Lastly, these thresholds can be bypassed for certain
operations, mostly for synchronous reads. Se�ing min and max
label size values is dependent on many system parameters such as
memory page size, cache size, network type (e.g., TCP bu�er size),
and type of destination storage (e.g., HDDs, NVMe, SSDs). LABIOS
can be con�gured in a synchronous mode, where the application
waits for the completion of the label, and in asynchronous mode,
where the application pushes labels to the system and goes back
to computations. A waiting mechanism, much like a barrier, can
be used to check the completion of a single or a collection of asyn-
chronously issued labels. �e async mode can signi�cantly improve
the system’s throughput but it also increases the complexity of data
consistency and fault tolerance guarantees.

Content Manager: is mainly responsible for handling user data
inside a warehouse.�e warehouse is implemented by a distributed
hashmap (i.e., key-value store), it temporarily holds data in-memory
e�ectively serving as the bridge between clients and workers. �e
warehouse is a collection of system-level structures (i.e., tables in
the distributed key-value store), that are application-speci�c, and
has the following requirements: highly available, concurrent data
access, fault tolerant, and high throughput. �e content manager
exposes the warehouse via a simple get/put/delete interface to both
the clients and the workers. �e size and location of the ware-
house is con�gurable based on several parameters such as number
of running applications, application’s job size, dataset aggregate
size, and number of nodes (e.g., one hashtable per node, or per
application). Every entry in the warehouse is uniquely identi�ed
by a key which is associated with one or more labels. �e content
manager can also create ephemeral regions of the warehouse (e.g.,
temporary rooms) which can be used for work�ows where data
are shared between processes (i.e., data sharing, Section 2.2). Data
�ows through LABIOS as follows: from application’s bu�er to the
warehouse, and from there to worker storage for persistence or
to another application’s bu�er. Lastly, the content manager also
provides a cache to optimize small size data access; a known issue in
distributed storage [10]. I/O requests smaller than a given threshold
are kept in a cache and, once aggregated, a special label is created
and pushed to the distributed queue to be scheduled to a worker
(much like memtables and SSTables in LevelDB). �is minimizes
network tra�c and can boost the performance of the system.

Catalog Manager: is responsible to maintain both user and
system metadata information in an inventory, implemented by a
distributed hashmap. �e catalog manager exposes an interface
for each application to query and update the entries within the
inventory. Decentralization of the catalog services makes the sys-
tem scalable and robust. Multiple concurrent processes can query
the inventory at the same time. For concurrent updates, LABIOS
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adopts the semantics of the underlying distributed hashmap with
high-availability and concurrent access ensuring the correctness
and high throughput of catalog operations. LABIOS also o�ers the
�exibility to place the inventory in memory for high performance,
protected by triple replication for fault tolerance. However, this
increases the memory footprint of LABIOS and it depends on the
availability of resources. �e organization of inventory entries
depends on the data model (�les, objects, etc.) and/or high-level
I/O libraries and middleware. For instance, for POSIX �les the in-
ventory entries may include: �lename to �le stat, �le handler to
�lename, �le handler to �le position in o�set, �lename to a col-
lection of labels, and others. An HDF5 or a JSON �le will have
di�erent inventory entries. LABIOS-speci�c catalog information
include: label status (e.g., in-transit, scheduled, pending), label dis-
tribution (e.g., label to workerID), label a�ributes (e.g., ownership,
�ags), and location mappings between user’s data and LABIOS
internal data structures (e.g., a user’s POSIX �le might be stored
internally as a collection of objects residing in several workers).
Lastly, when LABIOS is connected to external storage resources, it
relies on their metadata service. LABIOS becomes a client to the
external storage resources and ”pings” their metadata service to
acquire needed information. LABIOS does not keep a copy of their
respective metadata internally to avoid possible inconsistent states.
However, further investigation is needed to optimize this process
by avoiding added network latencies from external sources.
2. LABIOS Core, sub�gure 2(b): �is component is responsible to
manage the instruction, data, and metadata �ow separately.

Administrator: maintains the system’s state by keeping track
of all running applications in a global registry, se�ing up the envi-
ronment per application (e.g., boot up exclusive workers if needed,
pre-load data from external sources, etc.), and performing security
control via user authentication and access permission checks.

Label �eue: LABIOS distributed queuing system has the fol-
lowing requirements: high message throughput, always on and
available, at-most-once delivery guarantees, highly concurrent, and
fault tolerant. �ese features ensure data consistency since the
label dispatcher will consume labels once and in order. �e queue
concurrency ensures that multiple dispatchers can service the same
queue or one dispatcher multiple queues. �e number of queues is
con�gurable based on the load (e.g., one queue per application, or
one queue per 128 processes, or one queue per node).

Label Dispatcher: subscribes to one or more distributed label
queues and dispatches labels to workers using several scheduling
policies. �e label dispatcher is multi-threaded and can run on
one or more nodes depending on the size of the cluster. LABIOS
dispatches labels based on either a time window or the number of
labels in the queue; both of those parameters are con�gurable. For
example, the dispatcher can be con�gured to distribute labels one
by one or in batches (e.g., every 1000 labels). To avoid stagnation,
a timer is also used; if the timer expires, LABIOS will dispatch all
available labels in the queue. Furthermore, the number of label
dispatchers is dynamic and depends on the number of deployed
queues. �ere is a �ne balance between the volume and velocity
of label production stemming from the applications and the rate
at which the dispatcher handles them. �e relationship between
the dispatcher and queuing system increases the �exibility and

scalability of the platform and provides an infrastructure to match
the rate of incoming I/O. �e dispatcher consists of two phases:
a) Label Shu�ing: takes a vector of labels as an input and shu�es
them based on type and �ags. Two operations are performed by
the shu�er. Data aggregation: labels that re�ect user’s requests in
consecutive o�sets can be combined to one larger label to maintain
locality (this feature can be turned on or o�). Label dependencies:
data consistency must be preserved for dependent labels. For in-
stance, a read a�er write pa�ern; LABIOS will not schedule a read
label before the dependent write label completes. To resolve such
dependencies, the shu�er will create a special label, called super-
task, which embodies a collection of labels that need to be executed
in strictly increasing order. A�er sorting the labels and resolving
dependencies, the shu�er sends labels either to the solver to get
a scheduling scheme, or directly to the assigner depending on the
type (e.g., a read label is preferably assigned to the worker that
holds the data to minimize worker-to-worker communication).
b) Label Scheduling: takes a vector of labels as an input and pro-
duces a dispatching plan. For a given set of labels and workers,
the scheduler answers three main questions: how many workers
are needed, which speci�c workers, and which labels are assigned
to which workers. LABIOS is equipped with several scheduling
policies (in detail in Section 3.3). A map of {workerID, vector of
labels} is passed to the worker manager to complete the assignment
by publishing the labels to each individual worker queue. Labels
are published in parallel using a thread pool. �e number of threads
in the pool depends on the machine the label dispatcher is running
on as well as the total number of available workers.
3. LABIOS Server, sub�gure 2(c): �is component is responsible
for managing the storage servers and has two main entities:

Worker: is essentially the storage server in LABIOS. It is fully
decoupled from the applications, is multithreaded, and runs inde-
pendently. Its main responsibilities are: a) service its own queue, b)
execute labels, c) calculate its own worker score and communicate
it to the worker manager, d) auto-suspend itself if there are no
labels in its queue for a given time threshold, and e) connect to
external storage sources. �e worker score is a new metric, critical
to LABIOS operations, that encapsulates several characteristics of
the worker into one value which can then be used by the label
dispatcher to assign any label to any appropriate worker. A higher
scored worker is expected to complete the label faster and more
e�ciently. �e score is calculated by every worker independently
at an interval or if substantial change of status occurs, and it in-
cludes: i) availability: 0 not-available (i.e., suspended or busy), 1
available (i.e., active and ready to accept labels). ii) capacity: (dou-
ble) [0,1] based on the ratio between remaining and total capacity.
iii) load: (double) [0,1] based on the ratio between worker’s current
queue size and max queue size (the max value is con�gurable). iv)
speed: (integer) [1,5] based on maximum bandwidth of worker’s
storage medium and grouped based on ranges (e.g., 1: ≤200MB/s,
2: 200-550MB/s, ... 5: ≥3500MB/s). v) energy: (integer) [1,5] based
on worker’s power wa�age on full load (e.g., an ARM-based server
with �ash storage consumes less energy than a Xeon-based server
with a spinning HDD). �e �rst three are dynamically changing
based on the state of the system whereas speed and energy variables
are set during initialization and remain static. Lastly, each variable
is multiplied by a weight. LABIOS’ weighting system is set in place
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to express the scheduling policy prioritized (examples shown in
Table 2)). For instance, if energy consumption is the constraint that
the label dispatcher aims to optimize then the energy variable gets
a higher weight. �e �nal score is a �oat in range between 0 and 1
and is calculated as: Scoreworker (i) =

∑5
j=1Weiдhtj ∗Variablej .

Priority Availability Capacity Load Speed Energy
Low latency 0.5 0 0.35 0.15 0
Energy savings 0 0.15 0.2 0.15 0.5
High Bandwidth 0 0.15 0.15 0.70 0
Table 2: LABIOS worker’s score - Weighting examples.

WorkerManager: is responsible for managing the worker pool.
Its responsibilities are: a) maintain workers’ statuses (e.g., remain-
ing capacity, load, state, and score) in a distributed hashmap (in-
memory or on disk), b) host the workers’ queues, c) perform load
balancing between workers, and d) dynamically commission/de-
commission workers to the pool. It is connected to the administrator
for accepting initial con�gurations for incoming applications, and
to the label dispatcher for publishing labels in each worker’s queue.
It can be executed independently on its own node by static assign-
ment, or dynamically on one of the worker nodes by election among
workers. In a sense, the worker manager partially implements ob-
jectives similar to other cluster resource management tools such as
Zookeeper, or Google’s Borg. One of the most performance-critical
goals of the worker manager is to maintain a sorted list of work-
ers based on their score. Workers update their scores constantly,
independently, and in a non-deterministic fashion. �erefore, the
challenge is to be able to quickly sort the updated scores without
decreasing the responsiveness of the worker manager. LABIOS
addresses this issue by a custom sorting solution based on buckets.
�e set of workers are divided on a number of buckets (e.g., high,
medium, and low scored workers) and an approximate bin sorting
algorithm is applied [25]. A worker score update will only a�ect a
small number of buckets and the complexity time is relevant to the
size of the bucket. Lastly, the worker manager can send activation
messages to suspended workers either by using the administrative
network, if it exists, (i.e., ipmitool --power on), or by a custom
solution based on ssh connections and wake-on-lan tools.

3.2.4 Deployment Models. �e power and potential of LABIOS’
�exible and decoupled architecture can be seen in the several ways
the system can be deployed. Depending on the targeted hardware
and the availability of storage resources, LABIOS can: a) replace an
existing parallel or distributed storage solution, or b) be deployed
in conjunction with one or more underlying storage resources as
an I/O accelerator (e.g., burst bu�er so�ware, I/O forwarding, or
so�ware-de�ned storage in user space). Leveraging the latest trends
in hardware innovation, the machine model we present here as our
basis for several deployment schemes is as follows: compute nodes
equipped with a large amount of RAM and local NVMe devices, an
I/O forwarding layer [33], a shared burst bu�er installation based
on SSD equipped nodes, and a remote PFS installation based on
HDDs (motivated by the recent machines Summit in ORNL or Cori
on LBNL). Figure 3 shows four equally appropriate deployment
examples that can cover di�erent workloads:
(a) LABIOS as I/O accelerator (�g. 3(a)): can be used as a fast dis-
tributed cache for temporary I/O or on top of other external sources.
It is also ideal for Hadoop workloads with node-local I/O. However,
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Figure 3: LABIOS deployment schemes.

it must use some compute cores to run its services and I/O tra�c
will mix with the compute network.
(b) LABIOS as I/O forwarder (�g. 3(b)): ideal for asynchronous I/O
calls where applications pass their data to LABIOS which pushes
them in a non-blocking fashion to remote storage, either native to
the system or external. However, its scalability is limited by the
size of the I/O forwarding layer.
(c) LABIOS as I/O bu�ering (�g. 3(c)): ideal for fast temporary stor-
age, data sharing between applications, and in-situ visualization
and analysis. Requires additional storage and network resources.
(d) LABIOS as remote distributed storage (�g. 3(d)): o�ers be�er
system scalability by scaling each individual component indepen-
dently, be�er resource utilization, and higher �exibility to the sys-
tem administrator. For instance, one can increase the number of
client queues in scenarios when label production is high, or deploy
more dispatchers to distribute labels faster. It has, however, higher
deployment complexity. LABIOS’ fully decoupled architecture pro-
vides greater �exibility and promotes scalability; I/O scales along
with the application by simply provisioning additional resources.

3.3 Implementation
Label Scheduling: LABIOS balances the rate of incoming labels,
the dispatching cost, and the time to execute the labels and o�ers
an �exible, intent-aware infrastructure. LABIOS provides a custom
data distribution by implementing di�erent scheduling policies:
a) Round Robin: given a set of labels and a list of available workers
the dispatcher will distribute labels in a round robin fashion, much
like a PFS does. �e responsibility of activating workers and com-
piling a list of available workers for every scheduling window falls
under worker manager. �is policy demonstrates low scheduling
cost but additional load balancing between workers might occur.
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Figure 4: LABIOS API example.

b) Random Select: given a set of labels, the dispatcher will distrib-
ute labels to all workers randomly regardless of their state (i.e.,
active or suspended). �is policy ensures the uniform distribution
of workload between workers, low scheduling cost, but with no
performance guarantees (i.e., possible latency penalty by activating
suspended workers, or lack of remaining capacity of worker, etc.).
c) Constraint-based: in this policy, LABIOS provides the �exibility
to express certain priorities on the system. �rough the weighting
system of worker scores, discussed in Section 3.2.3, the dispatcher
will distribute labels to workers based on the constraint with higher
weight value. �e constraints used are: a) availability, active work-
ers will have higher score. b) worker load, based on worker’s queue
size. c) worker capacity, based on worker’s remaining capacity. d)
performance, workers with higher bandwidth and lower latency
get higher score. For a given set of labels, the dispatcher requests
a number of workers with the highest score, respective to the pri-
oritized constraint, from the worker manager and distributes the
labels evenly among them. �e number of workers needed per a set
of labels is automatically determined by LABIOS based on the total
aggregate I/O size and the selected constraint balancing parallel
performance and e�ciency. �ese heuristics can be con�gured and
further optimized based on the workload.
d) MinMax: given a set of labels and a collection of workers, the
dispatcher aims to �nd a label assignment that maximizes I/O perfor-
mance while minimizing the system’s energy consumption, subject
to the remaining capacity and load of the workers; essentially a
minmax multidimensional knapsack problem, a well-known NP-
hard combinatorial optimization problem [55]. LABIOS solves this
problem using an approximate dynamic programming (DP) algo-
rithm [3] which optimizes all constraints from the previous policy.
�is policy gives a near-optimal matching of labels - workers but
with a higher scheduling cost.
API: LABIOS exposes a label API to the application to interact with
data. �e storage interface expresses I/O operations in the form
of labels. �e API includes calls to create-delete, publish-subscribe
labels, among others. LABIOS’ API o�ers higher �exibility and
enables so�ware de�ned storage capabilities. For instance, the code
snippet shown in Figure 4, creates an asynchronous label which
reads a �le that includes a collection of integers from an exter-
nal PFS using the MPI-IO driver, calculates the median value, and
passes only the result back to the application via asynchronous I/O.
LABIOS Prototype Implementation Details: LABIOS is writ-
ten in C++ and has approximately 10K lines of code. We also use

several external open source projects in our LABIOS prototype.
For the distributed queuing system, used widely in LABIOS both
in client and workers, we used NATS server [14], a simple, high-
performance open source messaging system. NATS was selected
due to its superiority in throughput (i.e., >200K msg/sec, 12x higher
than Apache ActiveMQ and 3x than Ka�a), low latency, and light-
weight nature. For the distributed hashmaps, we used a custom
version of Memcached with the extstore [49] plugin. Memcached
is a simple in-memory key-value store, with easy deployment, de-
velopment, and great APIs. �e extstore plugin allows us to store
memcached data to a storage device (e.g., NVMe, SSD) instead of
RAM. We also modi�ed the default key distribution from randomly
hashing keys to servers, to a node local scheme to increase through-
put and promote locality. E�ectively, each node in LABIOS stores
its hashtables on its local memcached daemon. For label serializa-
tion, we used Cereal [27], a header-only binary serialization library
which is designed to be fast, light-weight, and easy to extend. For
hashing we used Citihash algorithms [26], for memory allocations
TCMalloc, and lastly, for metadata indexing an in-memory B-Tree
implementation by Google.

3.4 Discussion
Considerations: LABIOS’ design and architecture promotes its
main objective of supporting a diverse variety of con�icting I/O
workloads under a single platform. However, additional features
could be derived from LABIOS label paradigm. Fault tolerance: In
the traditional streamlined I/O paradigm, if an fwrite() call fails
the entire application fails and it must restart to recover (i.e., using
check-pointing mechanisms developed especially in the scienti�c
community). LABIOS’ label granularity and decoupled architec-
ture could provide the ability to repeat a failed label and allow
the application to continue without restarting. Energy-awareness:
First, LABIOS’ ability to dynamically commission/decommission
workers to the pool creates an elastic storage solution with tunable
performance and concurrency control but also o�ers a platform
that could leverage the energy budget available. One could observe
the distinct compute-I/O cycles and redirect energy from compute
nodes to activate more LABIOS workers for an incoming I/O burst.
Second, LABIOS’ support of heterogeneous workers could lead to
energy-aware scheduling where non mission-critical work would
be distributed on low-powered storage nodes, e�ectively trading
performance for power consumption. Lastly, storage container-
ization could be a great �t for LABIOS’ decoupled architecture.
Workers could execute multiple containers running di�erent stor-
age services. For instance, workers would host one set of containers
running Lustre servers and another running MongoDB. �e worker
manager would act as the container orchestrator and the label dis-
patcher could manage hybrid workloads by scheduling labels to
both services under the same runtime.
Challenges and Limitations: During the design and implemen-
tation of LABIOS we have identi�ed several challenges.
Multitenancy and Security: How does LABIOS handle multiple ap-
plications accessing the system? Contention avoiding techniques
must be employed. LABIOS could handle this by operating in isola-
tion, where each application would have had its own queues, label
dispatchers, and workers; an additional layer of global application
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Figure 5: Anatomy of LABIOS operations.

orchestrator [38] could deal with the overall system tra�c. Further
concerns might arise by multitenancy such as user authentications
and security. For instance, the LABIOS prototype uses NATS server
as the queuing system. As of now, NATS does not support TLS and
SSL which could limit the secure capabilities of the system.
Concurrent operations: �ere are many components in LABIOS that
need to be e�ciently accessed at the same time. �e distributed
queuing system needs to support highly concurrent label insertion.
�e distributed hashmaps have to support a large number of clients
for accessing both data and metadata. For instance, LABIOS’ con-
straint on the priority queue is the timestamp which means clock
skewness across the cluster can a�ect the order of operations in
the system. LABIOS’ design relies heavily on the characteristics
and performance of those components and any limitations from
their side could become limitations of the entire LABIOS system.
I/O request decomposition: �e main question LABIOS faces is how
to transform I/O requests into labels. What would be an optimal
decomposition granularity? LABIOS’ label manager addresses this
by spli�ing requests based on an I/O size range. For small requests,
LABIOS caches them and aggregate them into a larger label. For
large requests, LABIOS splits them into more labels o�ering a higher
degree of parallelism. We plan to leverage the underlying hardware
characteristics (network bu�ers, RAM page size, disk blocks, etc.) to
re�ne LABIOS I/O request decomposition strategy. Another ques-
tion, relevant to label granularity, is how are label dependencies and
session/service management handled? Any task-based system faces
these challenges [66]. LABIOS resolves label dependencies based
on a con�gurable policy-driven granularity (i.e., per-application,
per-�le, per-dataset, etc.,). We plan to further LABIOS ability to
resolve label dependencies by using dependency graphs.

4 EVALUATION
Methodology: All experiments were conducted on a bare metal
con�guration o�ered by Chameleon systems [11]. �e total experi-
mental cluster consists of 64 client nodes, 8 burst bu�er nodes, and
32 storage servers. Each node has a dual Intel(R) Xeon(R) CPU E5-
2670 v3 @ 2.30GHz (i.e., a total of 48 cores per node), 128 GB RAM,
10Gbit Ethernet, and a local HDD for the OS. Each burst bu�er
node has the same internal components but, instead of an HDD,
it is equipped with SSDs. �e cluster OS is CentOS 7.1, the PFS
we used is OrangeFS 2.9.6. In terms of workloads, we used all four
applications from Section 2.2 and a synthetic benchmark. LABIOS
has been deployed in the cluster as a storage solution (Fig. 3 (d)).
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Figure 6: LABIOS internal component evaluation.
- Anatomy of LABIOS read/write operations: Figure 5 shows

decomposition of the read and write label execution expressed
as time percentage and divided by each LABIOS component. For
instance, a write label starts with the LABIOS client building a label
(at 12 o’clock on the �gure) which takes 2% of the total time, it then
passes the data to the warehouse (put data 11%), publishes the label
to the queue (1%), and �nally updates the catalog manager (MDM)
about the operation (17%). �e total LABIOS client operations take
31% of the total time. �e label journey continues in the label
dispatcher who picks up the label from the queue (subscribe 5%),
schedules it (3%), and pushes it to a speci�c worker’s queue (publish
1%). �e most work is done by the LABIOS worker (60% of the total
operation time) who �rst picks up the label from its queue and the
data from the warehouse (get data 17%), writes the data down to
the disk (29%), and �nally updates the catalog manager (1%). All
results are the average time of executing a 1MB label 10K times.
- Label dispatching: in this test, we present how LABIOS per-

forms with di�erent scheduling policies and by scaling the number
of label dispatcher processes. We report the rate (i.e., labels per
second) at which each scheduling policy handles incoming labels.
LABIOS client runs on all 64 client machines, the label dispatcher
is deployed on its own dedicated node, and LABIOS workers run
on the 32 server machines. We measure the time the dispatcher
takes to distribute 100K randomly generated labels (i.e., mixed read
and write equally sized labels). As it can be seen in Figure 6(a), all
policies scale linearly as we scale the label dispatcher processes
from 6-48 (i.e., equal to max cores of the node). Round-robin and
random-select achieve comparable scheduling rates between 55-
125K labels per second. Constraint-based is more communication
intensive since it requires exchanging information about the work-
ers with their manager. MinMax scales be�er with more resources
since it is more CPU intensive (i.e., DP approach).
- Storage malleability: in this test, we present how LABIOS elas-

tic storage feature a�ects I/O performance and energy consumption.
We issue 4096 write labels of 1MB each and we measure the total I/O
time stemming from di�erent ratios between active workers over
total workers (e.g., 50% ratio means that 16 workers are active and
16 are suspended). A suspended worker can be activated in about
3 seconds on average (in our testbed between 2.2-4.8 seconds). Fig-
ure 6(b) demonstrates the importance of balancing the added latency
to activate more workers and the additional performance we get.
We show two worker allocation techniques, the static (S), where la-
bels are placed only on the active workers, and the elastic (E), where
more workers activate to serve incoming I/O. When LABIOS has
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(a) I/O asynchronicity - CM1 performance.
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(b) Resource heterogeneity - HACC performance.
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(c) Data provisioning - Montage performance.

 0

 1000

 2000

 3000

 4000

 5000

Hadoop
Disk

LABIOS
Disk
Local

LABIOS
Disk

Remote

Hadoop
Memory

LABIOS
Memory

Local

LABIOS
Memory
Remote

O
v
e

ra
ll 

ti
m

e
 (

s
e

c
)

System - Device - Configuration

Map
Shuffle

Reduce

(d) Storage Bridging - Hadoop K-Means performance.

Figure 7: LABIOS performance evaluation.

a small percentage of active workers, the elastic strategy can boost
performance signi�cantly even though we pay the latency penalty
to activate more workers. However, when we have a su�cient
number of active workers (e.g., 75% or 24 out of 32 total workers),
waking up more workers hurts the performance due to the latency
penalty. �is is further apparent when we see the energy e�ciency
of the system, expressed in wa�s per hour (Whr). In our testbed,

active workers consume 165 wa�s, whereas suspended workers
only 16 wa�s. LABIOS elastic worker allocation makes sense until
the 75% case where the static allocation is more energy e�cient.
- I/O asynchronicity: LABIOS supports both synchronous and

asynchronous operations. �e potential of a label-based I/O system
is more evident by the asynchronous mode where LABIOS can
overlap the execution of labels behind other computations. In this
test, LABIOS is con�gured with the round robin scheduling policy,
label granularity of 1MB, and the label dispatcher uses all 48 cores
of the node. We scaled the clients from 384 to 3072 processes (or
MPI ranks in this case) to see how LABIOS scales. We run CM1
in 16 iterations (i.e., time steps) with each step �rst performing
computing and then I/O. Each process is performing 32MB of I/O
with the total dataset size reaching 100GB per step for the largest
scale of 3072. As it can be seen in Figure 7(a), LABIOS scales well
with the synchronous mode, o�ering competitive performance
when compared with our baseline, an OrangeFS deployment using
the same number of storage servers (i.e., 32 servers). When LABIOS
is con�gured in the async mode, each I/O phase can be executed
overlapped with the computation of the next step. �is results in a
signi�cant 16x I/O performance boost, and a 40% execution time
reduction since the I/O is hidden behind computation. Note that
no user code change is required. LABIOS intercepts the I/O calls
and builds labels that get executed in a non-blocking fashion.
- Resource heterogeneity: in this test, we run HACC also in 16

time steps. At each step, HACC saves its state on the burst bu�ers
and only at the last step persists the checkpoint data to the remote
storage, an OrangeFS deployment. �is workload is update-heavy.
LABIOS is con�gured similarly as before but with support of hetero-
geneous workers, 8 SSD burst bu�ers and 32 HDD storage servers.
LABIOS transparently manages the burst bu�ers and the servers,
and o�ers 6x I/O performance gains, shown in Figure 7(b). More-
over, worker to worker �ushing is performed in the background.
- Data provisioning: in this test, we run Montage, an application
that consists of multiple executables that share data between them
(i.e., output of one is input to another). LABIOS is con�gured
similarly to the previous set of tests. �e baseline uses an OrangeFS
deployment of 32 servers. In this test, the simulation produces 50GB
of intermediate data that are wri�en to the PFS and then passed,
using temporary �les, to the analysis kernel which produces the
�nal output. As it can be seen in Figure 7(c), our baseline PFS spends
signi�cant time in I/O for this data sharing via the remote storage.
�is work�ow can be signi�cantly boosted by making the data
sharing more e�cient. LABIOS, instead of sharing intermediate
data via the remote storage, passes the labels from the simulation to
the analysis via the distributed warehouse. Each intermediate data
�le creates labels where the destination is not LABIOS workers but
the analysis compute nodes. �is accelerates the performance in
two ways: a) no temporary �les are created in the remote storage
servers, and b) simulation and analysis can now be pipelined (i.e.,
analysis can start once the �rst labels are available). As a result,
LABIOS o�ers 65% shorter execution time, boosts I/O performance
by 17x, and scales linearly as the number of clients grow.
- Storage Bridging: Figure 7(d) demonstrates the results of run-

ning K-means clustering. Our baseline is a 64-node HDFS cluster.
LABIOS is con�gured in two modes: node-local I/O, similar to the

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

22



HDFS cluster, and remote external storage, similar to an HPC clus-
ter (Section 3.2.4 (a) & (d)). In the �rst mode, LABIOS workers
run on each of the 64 nodes in the cluster whereas in the second
mode, data resides on an external storage running on 32 separate
nodes. �is application has three distinct phases: a) Map, each map-
per reads 32MB from storage, performs computations, and then
writes back to the disk 32MB of key-value pairs. b) Reduce, each
reducer reads 32MB of key-value pairs wri�en from the mappers
and performs further computations, c) Shu�e, all values across all
reducers in the cluster are exchanged via the network (i.e., 32MB
network I/O). Finally, it writes the new �nal centroids back to the
disk. An optimized version of this algorithm (i.e., Apache Mahout)
avoids writing the key-value pairs back to HDFS during map phase,
but instead it emits those values to the reducers avoiding exces-
sive disk I/O (i.e., Hadoop-Memory in �gure 7(d)). LABIOS supports
this workload by having each worker on every node reading the
initial dataset in an optimized way by performing aggregations,
much like MPI collective-I/O where one process reads from storage
and distributes the data to all other processes. Further, LABIOS
decoupled architecture allows the system to read data from external
resources (i.e., LABIOS-Disk-Remote in �gure 7(d)). As it can be
seen in the results, reading from external sources is slower than the
native node-local I/O mode but it is still a feasible con�guration
under LABIOS, one that leads to the avoidance of any expensive
data movements or data-ingestion approach.

5 RELATEDWORK
Innovation and new features in modern storage: �xed reservation
with performance guarantees in Ceph [69], in-memory ephemeral
storage instances in BeeGFS [28], decoupling of data and metadata
path in latest versions of OrangeFS [59], and client-to-client coor-
dination with low server-side coupling in Sirocco [16]. Our work
is partially inspired by the above developments. LABIOS is able to
o�er these features due to its innovative design and architecture.
Active storage: Comet [24] an extensible, distributed key-value store
that seeks application-speci�c customization by introducing active
storage objects. Comet’s design allows storage operations as a
result of executing application speci�c handlers. ActiveFlash [64]
an in-situ scienti�c data analysis approach, wherein data analysis is
conducted on where the data already resides. LABIOS workers can
independently execute data-intensive operations in a non-blocking
fashion since they are fully decoupled from the clients.
Work�ow Interoperability: Running data analysis along with com-
putationally challenging simulations has been explored by [7].
Dataspaces [20] o�ers a semantically specialized virtual shared
space abstraction to support multiple interacting processes and
data-intensive application work�ows. DAOS [8] integrates a high-
performance object store into the HPC storage stack and supports a
�exible interface for diverse workloads. However, dedicated analy-
sis resources or expensive data movement between di�erent clusters
is still required. LABIOS’ label describes the destination of a certain
data operation and can be a memory bu�er or a �le on another
compute node making data sharing easy and e�cient.
Task-based Computation Frameworks: Machine independent parallel
task-based computing paradigms with new runtime systems such as
Charm++ [34] and Legion [1] have been long advocating for splic-
ing computation to smaller, independent pieces that can be be�er

managed [41], scheduled [43, 45], and executed [48] on heteroge-
neous environments. LABIOS, in a sense, realizes the same vision
of work decomposition but for I/O jobs and not computations.
Storage Malleability: elasticity is a well explored feature in Cloud
storage. Dynamic commission of servers in HDFS [13], transac-
tional database properties with elastic data storage such as Elas-
TraS [19], and several works exploring energy e�ciency in storage
systems [2, 44]. LABIOS inherits this feature by its decoupled archi-
tecture and the worker pool design and brings storage malleability
to HPC as well as BigData.

6 CONCLUSIONS AND FUTUREWORK
Modern large-scale storage systems are required to support a wide
range of work�ows with di�erent, o�en con�icting, I/O require-
ments. Current storage solutions cannot de�nitively address issues
stemming from the scale explosion. In this paper, we present the
design principles and the architecture of a new, distributed, scalable,
elastic, energy-e�cient, and fully decoupled label-based I/O sys-
tem, called LABIOS. We introduce the idea of a label, a fundamental
piece of LABIOS’ architecture, that allows the I/O system to provide
storage �exibility, versatility, agility, and malleability. Performance
evaluation has shown the potential of LABIOS’ architecture by
successfully executing multiple con�icting workloads on a single
platform. LABIOS can boost I/O performance on certain workloads
by up to 17x and reduce overall execution time by 40-60%. Finally,
LABIOS provides a platform where users can express intent with
so�ware-de�ned storage abilities and a policy-based execution. As
future work, we plan to further develop our system, test it with
larger scales, deploy it on more platforms, and extend its functional-
ity with higher fault tolerance semantics, label dependency graphs,
and e�cient communication protocols.
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