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ABSTRACT
�ere is an ocean of available storage solutions in modern high-
performance and distributed systems. �ese solutions consist of Par-
allel File Systems (PFS) for the more traditional high-performance
computing (HPC) systems and of Object Stores for emerging cloud
environments. More o�en than not, these storage solutions are
tied to speci�c APIs and data models and thus, bind developers,
applications, and entire computing facilities to using certain inter-
faces. Each storage system is designed and optimized for certain
applications but does not perform well for others. Furthermore,
modern applications have become more and more complex consist-
ing of a collection of phases with di�erent computation and I/O
requirements. In this paper, we propose a uni�ed storage access
system, called IRIS (i.e., I/O Redirection via Integrated Storage). IRIS
enables uni�ed data access and seamlessly bridges the semantic
gap between �le systems and object stores. With IRIS, emerging
High-Performance Data Analytics so�ware has capable and diverse
I/O support. IRIS can bring us closer to the convergence of HPC
and Cloud environments by combining the best storage subsystems
from both worlds. Experimental results show that IRIS can grant
more than 7x improvement in performance than existing solutions.
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1 INTRODUCTION
In the age of Big Data, scienti�c applications are required to process
large volumes, velocities, and varieties of data, leading to an explo-
sion of data requirements and increased complexity of use [10]. In
High-Performance Computing (HPC), traditional data management
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consists mostly of parallel �le systems (PFS), such as Lustre [4],
PVFS2 [37], GPFS [39], etc. Historically, the data model of the un-
derlying storage systems has followed the POSIX standard and PFSs
have been responsible for managing it. However, while the single
stream of bytes model of POSIX is needed for strong consistency, it
is inconvenient for parallel access and might also lead to expensive
data transformations. As we get closer to the exa-scale era, PFSs
face signi�cant challenges in performance, scalability, complexity,
limited metadata services, and others [12], [17]. Modern HPC stor-
age systems are not the best �t for Big Data applications since they
were designed with traditional scienti�c applications in mind.

High availability of popular general purpose analysis frame-
works like MapReduce [11], Spark [51], and others in Apache Big-
Top [2], as well as the wide variety of available Object Stores such
as MongoDB [28], HyperDex [13], and Cassandra [24], have created
a healthy so�ware environment in Cloud computing and Big Data
applications. However, these analysis frameworks are not designed
for HPC machines and do not take advantage of any capabilities
of the extremely expensive and sophisticated technologies present
in existing supercomputers. �ey also cannot support traditional
HPC workloads (i.e., MPI applications) and would most likely fail
to meet the demand of High-Performance Data Analytics (HPDA)
[19], the new generation of Big Data applications, which involve
su�cient data volumes and algorithmic complexity to require HPC
resources. International Data Corp. (IDC) forecasts that the HPDA
market will grow from $3.2 billion in 2010 to $16.9 billion in 2018
[20]. Currently, approximately 70% of HPC sites around the world
with at least 30% of their available compute cycles perform HPDA.

HPDA is driven by the increasing ability of powerful HPC sys-
tems to run data-intensive problems at larger scale, at higher res-
olution and with more elements. In addition, the proliferation of
larger, more complex scienti�c instruments and sensor networks to
collect extreme amounts of data pushes for more capable analysis
platforms. Performing data analysis using HPC resources can lead
to performance and energy ine�ciencies. In [43] the authors point
out that traditional o�ine analysis results in excessive data move-
ment which in turn causes unnecessary energy costs. Alternatively,
performing data analysis inside the compute nodes can eliminate
the above mentioned redundant I/O, but can lead to wastage of
expensive compute resources and will slow down the simulation
job due to interference. �erefore, modern scienti�c work�ows
require both high-performance computing and high-performance
data processing power. However, HPC and HPDA systems are dif-
ferent in design philosophies and target di�erent applications. D.
Reed and J. Dongarra in [35] point out that the tools and cultures of
HPC and HPDA have diverged, to the detriment of both; uni�cation
is essential to address a spectrum of major research domains.

�is divergence led HPC sites to employ separate computing
and data analysis clusters. For example, NASA’s Goddard Space
Flight Center uses one cluster to conduct climate simulation, and
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another one for the data analysis of the observation data [54]. Due
to the data copying between the two clusters, the data analysis is
currently conducted o�-line, not at runtime. However, runtime
simulation/analysis will lead to more accurate and faster solutions.
�e data transfer between storage systems along with any neces-
sary data transformations are a serious performance bo�leneck
and cripples the productivity of those systems. Additionally, it in-
creases the wastage of energy and the complexity of the work�ow.
Another example is the JASMIN platform [7] run by the Center of
Environmental Data Analysis (CEDA) in the UK. It is designed as a
”super-data-cluster”, which supports the data analysis requirements
of the UK and European climate and earth system modeling commu-
nity. A major challenge they face is the variety of di�erent storage
subsystems and the plethora of di�erent interfaces that their teams
are using to access and process data. �ey claim that PFSs alone
cannot support their mission as JASMINE needs to support a wide
range of deployment environments.

�ere is an increasingly important need of a uni�ed storage
access system which will support complex applications in a cost-
e�ective way leading to the convergence of HPC and HPDA. How-
ever, such uni�cation is extremely challenging with a wide range
of issues [35]: a) gap between traditional storage solutions with
semantics-rich data formats and high-level speci�cations, and mod-
ern scalable data frameworks with simple abstractions such as
key-value stores and MapReduce, b) di�erence in architecture of
programming models and tools, c) management of heterogeneous
resources, d) management of diverse global namespaces stemming
from di�erent data pools, etc. A radical departure from the existing
so�ware stack for both communities is not realistic. Instead, future
so�ware design and architectures will have to raise the abstraction
level, and therefore, bridge the semantic and architectural gaps.

In this paper, we introduce two novel abstractions, namely Vir-
tual Files and Virtual Objects, that help overcome the above men-
tioned challenges. We present the design and implementation of
IRIS (I/O Redirection via Integrated Storage), a uni�ed and inte-
grated storage access system. IRIS is a middleware layer between
applications and storage. By using virtual �les and objects, IRIS can
unify any data model and underlying storage framework, and thus,
allow applications to use them collaboratively and interchangeably.
With IRIS, an MPI application can directly access data from an Ob-
ject Store avoiding the costly data movement from one system to
another while providing an e�ective computing infrastructure for
HPDA. �us, IRIS creates a uni�ed ”storage language” to bridge the
two very di�erent compute-centric and data-centric data storage
camps. By using this ”language”, IRIS extends HPC to HPDA; a vital
need from both the HPC and the data analytic community. IRIS
seamlessly enables cross-storage system data access without any
change to user code. IRIS’s modular design allows the support of a
wide variety of applications and interfaces. From MPI simulations
to HPDA analysis so�ware and from high-level I/O libraries such
as pNetCDF [26], HDF5 [14], MOAB [41], MPI-IO [42] etc., to the
more Cloud-based Amazon S3 [1] and Openstack Swi� [30] REST
APIs, IRIS comfortably integrates the I/O requests.

�e contributions of this paper are: 1) We designed and im-
plemented a uni�ed storage access system that integrates various
underlying storage solutions such as PFSs or Object Stores. �is
system is called IRIS. 2) We introduced two novel abstract ideas, the

Virtual File and the Virtual Object that can help map user’s data
structures to any data management framework. 3) We evaluated
our solution and the results show that, in addition to providing
programming convenience and e�ciency, IRIS can grant higher
performance by up to 7x than existing solutions in the intersection
of HPC and HPDA.

2 BACKGROUND
Parallel �le systems: PFSs are widely popular and well under-
stood within the storage community. �erefore we will not expand
much on the background and we only list some advantages and
disadvantages to provide context. �e main advantages a PFS o�ers
is simultaneous access by many clients, scalability, and capability
to distribute large �les across multiple nodes, a hierarchical global
name space, and high bandwidth via parallel data transfer. While
many scienti�c applications following the PFS assumption of access
one single large contiguous �le, some applications such as those
in astronomy and climatology have non-contiguous data access
pa�erns and generate many small I/O requests. While PFSs excel
at large and aligned concurrent accesses, they face signi�cant per-
formance degradation in case of small accesses, unaligned requests,
and heavy metadata operations [8]. Some limitations of PFSs [18],
originate from persistence: data access performance is dependent
of the underlying �les, directories, and tree structures (the higher
the number of �les in a PFS, the greater the risk of performance
degradation). Maintaining data consistency of �le systems poses
an overhead on the overall system, and o�en creates issues such
as fragmentation, journaling, and simultaneous operations on the
same �le system structures. Finally, the storage subsystem may
pose additional limitations because of RAID, disk sizes, and other
limiting factors by either hardware or so�ware. PFS will need a
major li�ing for the next generation of exascale supercomputers,
even without considering the newly emerged HPDA I/O demands.

Object Storage: Object Stores encapsulate data, metadata, a
globally unique identi�er, and data a�ributes into a single im-
mutable entity termed object. In an Object Store, objects are orga-
nized in a �at address space (i.e., every object exists at the same level
in a large scalable pool of storage). Object Stores follow location
independent addressing and are accessed via the unique identi�er.
Object Stores are designed primarily to manipulate data sets that do
not have a prede�ned data model or in other words are unstructured
or semi-structured. �e key operations for an Object Store include
retrieval (get), storage (put), and deletion (delete). Object Stores can
be categorized as generic key-value stores, document-based stores,
column-based stores, and graph-based stores. With a �at names-
pace and the ability to easily expand and store large data sets at a
relatively low cost, Object Stores o�er scalability, �exibility, rapid
data retrieval, and distributed access. �ey are easily expandable
and are well suited for applications requesting non contiguous data
accesses and/or heavy metadata operations. Object Stores o�er
consistent data access throughput and a set of extensible metadata.
�e Object Store space (also known as NoSQL schemes) demon-
strates a huge variety of di�erent implementations each with its
own strengths and weaknesses. Most of the implementations main-
tain the above characteristics. On the other hand, Object Stores are
ill suited for access pa�erns with frequently changing data and ones
involving complex operations since each update operation leads
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to the creation of a new object and the destruction of the previous
one followed by an update to the metadata. Additionally, Object
Stores are not POSIX-compliant. �is blocks their wide adoption
by the HPC community. Object stores, however, are widely used in
the Cloud community and in Big Data processing engines.

With ever increasing data sizes, typical data intensive applica-
tions such as machine learning and data mining, require more and
more computing power. �ese applications seek traditional HPC
technologies to speed them up, including support for complex data
structures and algorithms. �ere is no ”one storage for all” solution
and each storage system, PFS and Object Store, has its strengths
and weaknesses. We explored architectural di�erences and perfor-
mance characteristics in [23] and we found that each storage system
performs best under speci�c conditions and they could perfectly
complement each other.

3 DESIGN AND IMPLEMENTATION
3.1 IRIS Objectives
While designing IRIS we kept three major objectives in mind:
A: Enable MPI-based applications to access data in an Object
Store without user intervention. �is objective is designed to
support two major use cases automatically. 1) An MPI application
can write data directly to an Object Store environment where in turn
an HPDA application will operate upon. 2) An MPI application can
read data, previously created by an HPDA application, that reside
in an Object Store. IRIS enables MPI applications to access data
directly from Object Stores by making them accessible natively. �e
familiar fread() and fwrite() POSIX calls, used by MPI applications,
are still the interface to access data that reside in an Object Store.
Additionally, high-level I/O libraries such as MPI-IO, HDF5, and
pNetCDF are also supported by IRIS.
B: Enable HPDA-based applications to access data in a PFS
without user intervention. �is objective is designed with two
major use cases as well, similar but in an opposite direction as
the �rst objective. 1) HPDA application needs data, previously
generated by an MPI application, that reside in a PFS. 2) HPDA
application can write data directly to a PFS where an MPI applica-
tion will operate on it. With IRIS, HPDA applications can directly
access data to and from PFSs natively. In particular, IRIS allows
the get() and put() from an HPDA application to operate on �les
residing in a PFS. Combined with the �rst one, this objective gives
us a powerful way to store, access, and process data from two dif-
ferent environments by two di�erent computing engines, a more
computing-centric processing done by MPI, and a more data-centric
processing done by HPDA so�ware. Figure 1 (a) visualizes these
two objectives. �e black arrows represent the native data path for
each system while the blue arrows demonstrate the new data paths
IRIS enables.
C: Enable a hybrid storage access layer agnostic to �les or
objects. �is objective is designed to o�er a truly hybrid access to
data by abstracting the low-level storage interfaces and unifying the
APIs under one system. �erefore, IRIS allows developers to inter-
change the storage calls independent of the underlying architecture.
Via the hybrid storage layer that IRIS provides, applications can
access data from both storage systems at the same time. Addition-
ally, this allows IRIS to make intelligent decisions, use each storage
system exploiting its advantages, and o�er a higher I/O e�ciency.

(a) Uni�ed data access layer. (b) So�ware stack.

Figure 1: IRIS in high-level.

�is objective basically eliminates the black arrows in Figure 1 (a)
and grants IRIS the decision making responsibility about which
storage subsystem to use.

3.2 Design Considerations
While developing IRIS, we faced and solved many challenges. PFSs
are tightly coupled with the POSIX standard. �is is a known restric-
tion of the scalability of PFSs and a major source of performance
degradation [33]. On the other hand, Object Stores are not POSIX-
compliant which makes them scale very well and o�er low latency
for speci�c workloads [48]. However, they cannot replace PFSs
in scienti�c computing due to the lack of POSIX-compliance and
support of complex data structures. IRIS implements tunable consis-
tency [44] and two modes of POSIX-compliant metadata (i.e., strict
and relaxed). �erefore, IRIS can trade some POSIX-compliance to
grant be�er performance and scalability if the application demands
it. Fault tolerance is crucial in any system. IRIS adopts the fault
tolerance of the underlying storage subsystems. Additionally, IRIS
periodically writes the in-memory metadata information to the
disk. In case of a crash, IRIS restores the metadata image from
the disk and continues. In the current version of IRIS, there is still
a possibility of losing metadata in between of a checkpoint and
the time of the crash. We plan to extend this work and add fault
tolerance features such as write logs etc.

Note that di�erent implementations of a PFS or Object Store
might possibly lead to di�erent features and performance charac-
teristics. However, IRIS aims to bridge the semantic gap between
�les and objects by abstracting the lower level storage details. With
IRIS, HPC users can utilize a vast variety of data analysis so�ware
otherwise only available in Big Data environments, which in turn
will increase productivity, performance, and resource utilization.

3.3 IRIS Architecture
IRIS is a library that sits between applications and storage systems.
As such, it interacts with applications from above and issues its I/O
requests to the underlying storage system. �is is no di�erent from
any other middle-ware library. However, the design of IRIS makes
it capable to connect to many di�erent applications, both HPC and
HPDA, and storage systems at the same time. Figure 1 (b) demon-
strates the new so�ware stack with IRIS. One important note is that
IRIS is integrated transparently to the application and high-level
I/O libraries. Its modular design enables IRIS to support di�erent
applications and makes it �exible for future interfaces. IRIS already
supports POSIX, MPI-IO, HDF5, pNetCDF, and S3/Swi� user inter-
faces. From the storage system side, IRIS can interact with the local
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Figure 2: IRIS internal design.
Linux ext3 or ext4 �le systems, PVFS2 (also known as OrangeFS),
Lustre, as well as HyperDex and MongoDB Object Stores. �ere
are several components that work together to make IRIS a two-way
bridge between MPI applications/PFS and HPDA applications/Ob-
ject Stores. Two such components are abstract ideas, the VirtualFile
and the VirtualObject. IRIS utilizes these components internally to
build the connections between incompatible standards. Figure 2
demonstrates IRIS’ design. We use the following example to illus-
trate and explain the components one by one: an MPI application
accesses an Object Store to �rst write some data and then to read
them back.
VirtualFile is an in-memory construct that is used for mapping and
thus, bridging the semantic gap between POSIX �les and objects.
Its goal is to provide applications the illusion of the existence of a
normal �le system and that all operations are performed on a ”real”
�le. �e virtual �le is simply a space in memory which IRIS is using
to map user’s �le structures to key-value pairs. �e relationship
between a virtual �le and the objects that it includes is 1-to-N.
VirtualObject is an in-memory construct that is used for mapping
objects to �les and therefore bridges the semantic gap between
them. Its goal is to provide applications the illusion of the existence
of a normal Object Store much like the virtual �le above. �e
relationship between virtual objects and �les is N-to-1.
Mappers are responsible for creating a translation between what
the applications are passing to IRIS and what the underlying storage
system expects. �is translation is possible with the use of virtual
�les and/or objects. For instance, if the application calls fwrite(),
then IRIS intercepts it and calls the POSIX mapper to create a map-
ping to the underlying storage. For our example, a virtual �le is
created holding the keys responsible to carry out the operation.
�is virtual �le is then passed to the storage module. When the ap-
plication calls fread(), the mapper �nds the virtual �le that contains
the keys that hold the data and passes it to the storage module.
Storage modules are responsible for issuing I/O requests to the
underlying storage systems. IRIS aims to support many di�erent
storage systems, hence the modular design. Storage modules are
tied to the speci�c storage subsystem they implement. Storage
modules take a virtual �le or virtual object (e.g., if application is
MPI or S3, respectively) as an input and return the actual data.
Going back to our example, the storage module takes a virtual
�le created from the mapper and, using the appropriate interface
(e.g., MongoDB API), it calls get() or put() according to the desired
operation.
Metadata manager is responsible for keeping track of metadata
information about the entire library. First, it maintains any meta-
data required from the user interface in memory. We explored
two modes for IRIS: a strict-POSIX mode where all metadata from

POSIX are maintained in memory and persisted in the Object Store
at fclose(), and a relaxed-POSIX mode where basic metadata infor-
mation are kept. �ere is a trade-o� between POSIX compatibility
and performance. Metadata manager is also responsible for main-
taining all memory structures that facilitate the mapping between
user calls and storage system calls (i.e., virtual �les, virtual objects).
Compactor/defragmenter is a background internal service. IRIS
makes use of virtual namespaces, virtual �les, and virtual objects to
achieve a true integration of two incompatible systems. IRIS maps
application’s objects to virtual objects that are stored within �les in
the PFS. �erefore, these �les can end up fragmented a�er a series
of update operations. �is component is activated periodically
in the background to defrag fragmented data structures and �les,
or compact bu�ers and sets of key-value pairs. �e compactor
applies all object mutations asynchronously much like LevelDB
[16]. �e work done from this IRIS component is crucial internally,
and it guarantees a successful and e�cient execution. Lastly, it can
help with performance optimizations such as be�er indexing of the
active namespace.
Aggregator is a performance-driven designed component. It is
equivalent to the collective I/O operation in MPI-IO. Aggregator
always tries to combine requests together for be�er performance.
IRIS interacts with the storage systems in an optimized way. �at
means, either issue larger requests, avoiding small accesses and
excessive disk head movements, or minimizing network tra�c.
Prefetcher is the second performance-driven component. It does
exactly what the name suggests. It implements a few prefetching
algorithms to optimize I/O operations as whole. �e current version
of IRIS supports prefetching for sequential data access, strided
access, and random access. We plan to support user de�ned in
future versions.
Cache manager is the component that handles all bu�ers inside
IRIS. It is equipped with several cache replacement policies such as
least recently used (LRU) and least frequently used (LFU). It works
in conjunction with the prefetcher. It can be con�gured to hold
”hot” data for be�er I/O latency. It acts as a normal cache layer for
the entire framework.

3.4 Implementation Details
IRIS is implemented in C++ and totals more than 11000 lines of
code (LOC). A prototype version can be found online. We carefully
optimized the code to run as fast as possible and minimize the
overhead of the library. �e code is optimized with state-of-the-art
helper libraries. A few examples include the following. For memory
management we chose Google’s tcmalloc library that performs 20%
faster than the standard malloc and has a smaller memory foot-
print. For hashing, we selected the CityHash functions by Google,
the fastest collection of hashing algorithms at this moment. We
speci�cally used the 64-bit version of the hashing functions. For
structures such as maps and sets, we used Google’s BTree library
which is faster than the STL equivalent structures and reduces
memory usage by 50-80%. Finally, all con�gurable parameters in
IRIS are globally set per application via our Con�guration Manager.

3.4.1 Mapping modes. IRIS maps user’s data structures to an
underlying storage system in two directions: �les-to-objects and
objects-to-�les.
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Files-to-objects: we designed and implemented three di�erent
mapping strategies: a) balanced, b) write-optimized, and c) read-
optimized. �ese strategies aim to be�er serve respective workloads
and are all con�gurable through IRIS’s con�guration se�ings.

For the balanced mapping, IRIS divides the virtual �le into buck-
ets which are tied to a �xed-sized object. It then maps any �le
request, that falls into a bucket according to the o�set and the size
of the operation, to the respective object or collection of objects.
�e mapping is the same regardless of the read or write operation
since it maps �le location to objects. �e size of these buckets is
con�gurable and can a�ect the performance. A�er extensive test-
ing, we found that a bucket size of the median request size is the
best and more balanced choice. If the user does not have access to
an I/O trace �le of his/her application then a default bucket size of
512 KB is suggested.

For the write-optimized mapping, IRIS creates objects for each
request and inserts them in a B+ tree hierarchy for the subsequent
get operations. In this mapping, fwrite() and fread() have di�erent
mapping functions since we prioritize the write operation speed.
�erefore, for write operations we simply create objects as fast as
possible and we update our map of available ranges of �le o�sets
and keys. For read operations, the mapper �rst �nds the correct keys
within the range of o�sets passed, and performs one or multiple
get() operations from the Object Store. It then concatenates the
correct data according to a timestamp (i.e., the latest data for each
key are kept) and it returns to the caller.

For the read-optimized mapping, IRIS �rst creates a plethora of
various-sized keys for each put request and updates the map of
available keys and ranges of �le o�sets. �e goal here is to speed up
the fread() so most of the work is done by the write operation. For
example, assuming an fwrite() of 2 MB request size at o�set 0, and
a granularity of object sizes of 512 KB, the mapper will create the
following keys: 1 key of 2MB, 2 keys of 1 MB, and 4 keys of 512 KB.
�erefore, a subsequent fread() will access the best combination
of these keys minimizing the calls to the underlying Object Store
while maintaining a strong data consistency. �is mapping strategy
signi�cantly speeds up read operations by sacri�cing extra storage
capacity, method generally acceptable due to the low cost of disk
space. More on the design, implementation, and evaluation results
of these three mapping strategies are explored and presented in
details in [21].

Objects-to-�les: we designed and implemented four mapping
strategies regarding object-to-�le mapping: a) 1-to-1, b) N-to-1, c)
N-to-M simple, and d) N-to-M optimized. �ese strategies aim to
maintain data consistency while being general enough to support
a variety of workloads. �ese mapping modes are con�gurable
through IRIS’s con�guration se�ings.

In the 1-to-1 mapping strategy, each application’s object is mapped
to a unique �le. �e goal is to enable processing of existing col-
lections of �les and one can access and process data by simply
using a get() and put() interface. �e overhead of this mapping and
the memory footprint are kept at minimum. Update operations
simply mutate the respective �le. �e mapping semantics are also
the simplest making this strategy quite fast for a relatively small
number of objects.

In the N-to-1 mapping strategy, the entire keyspace of the appli-
cation’s objects is mapped to one big �le. �e goal is to maintain the

simplicity of the mapping. Virtual objects are wri�en sequentially
in the �le. Any updates are simply appended at the end of the �le
while marking the previous object as invalid. �is strategy is good
for smaller dataset sizes. Since each object resides in one big �le,
indexing is very important to facilitate faster get() operations. For
this reason each virtual object maintains the �le o�set where the
actual object resides. Under this strategy, metadata operations of
the underlying �le system are lightweight. Searching is o�oaded
from the �le system to IRIS with in-memory structures for faster
operations. �e mapping cost is relatively low. Data consistency is
guaranteed by the �le system. Concurrent reads are allowed.

For the N-to-M simple mapping strategy, we �rst introduce a
new structure, called container, which represents a �le that holds
virtual objects and other metadata information useful to IRIS such as
indexing and updating logs. In this mapping strategy, a collection
of application’s objects is mapped to a collection of containers.
�e constraint for the creation of new containers is the container
size. A�er each container reaches the maximum container size
(i.e., default in IRIS is 128MB) it will trigger the creation of the
next container. �e number of �les is controllable by the strategy
and containers’ size is prede�ned (i.e., user can tune this). Update
operations mutate the virtual object that resides in the container.

In the optimized version of N-to-M objects to �les mapping strat-
egy, application’s objects are �rst hashed into a key space and then
mapped to the container responsible for that range of hash values.
Speci�cally, keys go through the hashing function and get a 128 bit
hash value. Containers are created according to a range of hash val-
ues. �is strategy is extremely scalable since containers represent a
range of keys regardless of their size. �e container size is relative
to the overall size of the keys it holds. Update operations simply
write at the end of the container while invalidating the previous
object. IRIS’ defragmenter periodically runs in the background to
save storage space. Searching is performed in constant time. To
achieve this, we associated a truth array with each container. If an
object exists in the container, then the index of that object’s hash
will be true. �e goal of this strategy is to be able to scale and to
support fast writes, reads, and updates. More on the design, imple-
mentation, and evaluation results of these four mapping strategies
are explored and presented in details in [22].

3.4.2 Prefetching modes. Traditional PFSs and Object Stores
implement optimizations such as read-ahead and prefetching to
o�er be�er read performance. �ese optimizations rely on the
data access pa�ern created by the applications. However, when
IRIS maps a �le call over an Object Store, it loses this capability
since an fread() will be transformed to one or more get() opera-
tions with keys that may not have a relation between them, and
thus, any prefetching the underlying Object Store tries to perform
will not work. Similarly, a get() in IRIS may be transformed in a
sequence of fread() operations that may not demonstrate locality or
sequentiality, and thus, the underlying �le system prefetching will
not help. �erefore, we implemented these optimizations within
IRIS. Speci�cally, prefetching in IRIS has two modes: synchronous
(i.e., read-ahead) and asynchronous. We have also implemented
three prefetching algorithms: sequential, random, and user-de�ned.
For the sync mode, prefetching is performed synchronously. Each
fread() triggers the prefetcher component and, depending on the
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Table 1: IRIS’ metadata modes (time in ms)

#�les IRIS Strict IRIS Relaxed Local-Ext4 Remote-OrangeFS
1000 3.398 2.941 149.439 4,513.024

10000 33.712 28.928 1,257.540 50,058.524
100000 345.769 287.198 13,152.400 434,528.242

1000000 3,644.250 2,989.640 143,828.000 4,934,578.340

access pa�ern, it uses one of the prefetching algorithms, sequential
or random, to fetch the next piece of data. It passes the fetched
data to the cache manager. Any subsequent fread() will check if
the requested data are already in cache before reaching to the disk.
�e di�erence with the async mode, as the name suggests, is that
the fread() will return to the caller a�er it triggers an asynchronous
fetch. IRIS maintains a map of outstanding asynchronous opera-
tions, and thus, every fread() �rst checks for any pending fetch
before it actually performs any other reading. �is asynchronicity
will boost the performance for certain workloads where I/O and
computation are periodically switching. �e sequential algorithm
takes the current read arguments, such as the o�set, the size, and
the count, and tries to calculate the next piece of data that the ap-
plication will need. IRIS o�ers a con�gurable parameter about the
prefetching unit. It can be exactly the size of the previous fread() or
a prede�ned value (e.g., 2 MB). For instance, an fread() of 1 MB will
trigger a fetching of the next 1 MB or if the prede�ned value is set,
the next 2 MB. For all the asynchronous calls, we used the built-in
standard library std::future with the ”async” scheduling �ag on.

3.4.3 POSIX-compliant metadata modes. While the POSIX
standard has been around for a very long time and has served us
well, there are certain features in the standard that may have less
value as we move to the exa-scale era. One of the much debated
characteristics of the POSIX �le is its metadata information. �ese
are expressed by a structure named Stat and they include the fol-
lowing: the device ID, the �le serial number, the mode of the �le,
the number of hard links, the user ID, the group ID, the size of the
�le, the time of last access, the time of last data modi�cation, the
time of last status change, the block size, and lastly, the number of
blocks. All of this information is involved in all POSIX calls. Main-
taining these structure updated (e.g., updating the time accessed
or checking the �le permissions) can be a performance bo�leneck.
IRIS o�ers a fully POSIX compliant mode, we call strict-POSIX that
obeys the standard. However, since the �les are mapped into an
Object Store, it is not always needed to maintain all above infor-
mation. Hence, we created a second mode called relaxed-POSIX
where we only update crucial information about the virtual �le
such as the �le size, and the mode checking. By skipping the rest
of the metadata operations, IRIS can o�er higher performance. �e
test comprises of opening and closing up to a million �les. Table 1
compares each IRIS’ metadata mode with POSIX and reports the
time. �e relaxed-POSIX o�ers about 18% higher performance when
compared with the strict-POSIX mode. �is test was conducted on
our development machine with an Interl i7, 16GB RAM and an SSD
drive of 480MB read and 350MB write speed. �e actual POSIX calls
were tested on a local Linux ext4 �le system and on a remote Or-
angeFS �le system and are presented as a reference. Moreover, IRIS
maintains metadata information in-memory until fclose() is called
when IRIS persists the memory structures to disk. �is way, IRIS

demonstrates orders of magnitude be�er performance compared to
a traditional �le system that updates metadata on disk.

3.4.4 Caching. IRIS utilizes many bu�ers and caches. �e
cache manager o�ers a memory space to the prefetcher to cache
data and also to the application itself to cache user’s data. �e size
of all bu�ers are con�gurable via IRIS’s con�guration se�ings. We
have implemented two cache replacement policies, least recently
used (LRU) and least frequently used (LFU). �ese algorithms are no
di�erent than any other common LRU and LFU implementations.
IRIS also o�ers the ability to cache write operations for subsequent
reads. �is write-caching, along with prefetching, can boost the
reading performance, and is spatial and temporal tunable, giving
more control to the user. Caching plays a big role in the perfor-
mance optimization, and good memory management is crucial.
IRIS has successfully incorporated such technologies. Note that
IRIS’ caching is on top of any caching mechanisms inherent by the
underlying storage solution.

4 EVALUATION
4.1 Hardware and so�ware used
Testbed: All experiments were conducted on Chameleon systems
[9]. More speci�cally, we used the bare metal con�guration o�ered
by Chameleon. Each client node has a dual Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz (i.e., a total of 48 cores per node), 128 GB
RAM, 10Gbit Ethernet, and a local 200GB HDD. Each server node
has the same internal components but, instead of Ethernet network,
we used In�niband 56Gbit/s to avoid possible network thro�ling.
�e total experimental cluster consists of 1536 client MPI ranks (i.e.,
32 nodes), and 16 server nodes for PFS and Object Store each.
So�ware: �e operating system of the cluster is CentOS 7.0, the
MPI version is Mpich 3.2, the PFS we used is OrangeFS 2.9.6, and
the Object Store MongoDB 3.4.3. Our choice of those speci�c stor-
age systems as representatives from each category (e.g., PFS and
Object Stores) was made for several reasons. OrangeFS (formerly
known as PVFS2) is widely understood by the HPC community,
and it is mature enough in terms of development and research to
be the representative for the PFS. MongoDB has established itself
as one of the most popular Object Stores. It o�ers competitive per-
formance and several API bindings. We acknowledge that di�erent
representatives of each storage subsystem may have di�erences
in their implementations. However, the focus of this study is not
benchmarking OrangeFS and MongoDB, but the evaluation of the
uni�ed data access layer and how IRIS performs against the native
workload of a PFS and of an Object Store. �us, we believe this
issue does not hurt the conclusions and contributions of this study.
Applications: �e applications we used span over a wide range
of scienti�c simulations and data analysis kernels. �ese appli-
cations are real-world code representative of applications run-
ning on current supercomputers. �ey have been used on NCSI’s
Kraken and NCSA’s Blue Waters, ORNL’s Titan, and ANL’s Intrepid
and Mira. Speci�cally we used: CM1 [6, 15], a three-dimensional,
non-hydrostatic, non-linear, time-dependent numerical model de-
signed for idealized studies of atmospheric phenomena, LAMMPS
[34, 38], a classical molecular dynamics code and an acronym for
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Figure 3: IRIS mapping overhead.
Large-scale Atomic/Molecular Massively Parallel Simulator, Mon-
tage [29], an astronomical image mosaic engine, WRF [46], a next-
generation mesoscale numerical weather prediction system de-
signed for both atmospheric research and operational forecasting
needs, LANL App1 [27], an anonymous scienti�c application run-
ning in Los Alamos National Lab, and K-Means clustering, a typical
HPDA data analysis kernel. All test results are the average of �ve
repetitions to eliminate OS noise.

4.2 Evaluation Results
4.2.1 IRIS library overhead. In this test, we measure the over-

head of I/O calls using IRIS expressed in time (nanoseconds). �e
reported time refers to the di�erence between an I/O call to the
native storage solution and the same call over IRIS which will redi-
rect it to a di�erent storage system. For example, a normal fread()
will read data from a �le system whereas in IRIS will be mapped
to a get() operation, and data will be fetched from an Object Store.
�e I/O time is excluded since we wanted to isolate the overhead
added by the translation of the I/O calls. Figure 3 shows the average
overhead in time for both mapping �les-to-objects and objects-to-
�les. In the �rst case, the input is 128K �le operations (i.e., 131,072
POSIX calls) of 64KB size with mixed reads and writes. �e over-
head per call on average in this case is about 1100 nanoseconds or
0.00025%. In objects-to-�les case, the input is similarly 128K object
operations (i.e., 131,072) of 64KB size with mixed gets and puts. In
this case, the extra time needed by IRIS to map an object call to a
�le is on average 1300 nanoseconds, or a 0.00030% relative to the
native system, depending on the mapping strategy used. �us, the
mapping overhead of IRIS is minimal.

4.2.2 IRIS I/O performance. In this series of tests, we evalu-
ate IRIS in real world scenarios. We �rst run the applications and
we isolate the I/O phases since we only want to study the storage
performance and not the time spent in computations. Using the
IOSIG tracing tool [50] we collect all I/O traces. Each process oper-
ates on its own �le (i.e., �le-per-process) and performs I/O of about
100MB. �e total dataset is 150GB for the largest scale.

Each test consists of several phases. We �rst run the simulation
part of the application on top of a PFS. In the �gures, this is noted
SimWrite followed by the storage system in parenthesis. We then
convert and copy all data (i.e., output of the simulation phase)
to a data-intensive cluster equipped with an Object Store (e.g.,
MongoDB in our case). Note that in this section we refer to Object
Stores as KVS (i.e., Key-Value Stores) for short. In the �gures, this
is noted as Convert&Copy followed by the direction of the data
transfer (i.e., �les-to-objects as F2O and objects-to-�les as O2F).

We then execute the data analysis using the respective analysis
kernel, and it is presented in the �gures as Analysis followed by
the storage system in parenthesis. �e results of the analysis are
wri�en in the KVS and then are converted and copied back to
the PFS for the next phase of the simulation which is referred
as SimRead followed by the storage system in parenthesis. �is
execution �ow is similar to how NASA’s Goddard Space Flight
Center �rst conducts climate simulation on their supercomputer
facilities and then the data analysis of the observation data on a
di�erent cluster designed for data-intensive computations. We refer
to this �ow as Baseline in the following �gures. �e reported time
is a compound of the time needed by all phases and is calculated as:

Total time = SimulationWrite + CopyDataf romPFStoKVS +
DataAnalysis + CopyDataf romKVStoPFS + SimulationRead (1).
�e typical I/O workload of simulations is mostly checkpointing
and it is repeated periodically [5]. �us, we focus our evaluation
to one such checkpoint phase in which application’s data access
pa�erns are the same.

When executing the tests on top of IRIS, applications can use
new data paths to read or write data. As Figure 1 (a) shows, IRIS
can store simulation output from an MPI application directly to a
KVS, and analysis results directly to a PFS eliminating any data
transfers between KVS and PFS. �erefore, during the execution
�ow we examine, IRIS o�ers two new directions of performing the
I/O. First, the MPI simulation can directly write data to the KVS. In
the �gures, this is noted as SimWrite or SimRead followed by IRIS
in parenthesis with the underlying storage system in brackets (e.g.,
IRIS[KVS] means IRIS runs on top of KVS). �is way, the data anal-
ysis application makes native I/O calls to the KVS in order to write
the analysis results. A�er that, the simulation can read the data
directly from the KVS (i.e., fread() via IRIS). Second I/O direction
via IRIS is the case where data analysis application reads simulation
data and writes analysis results directly from/to PFS, noted as Anal-
ysis followed by IRIS in parenthesis with the underlying storage
system in brackets (e.g., IRIS[PFS] means IRIS runs on top of PFS).
Besides the elimination of data movements between storage sub-
systems, IRIS o�ers the opportunity to further optimize the entire
work�ow by overlapping the phases in Equation 1. When the HPC
and data analytic environments are separated, as in the baseline, all
phases are also separated and must execute serially one a�er the
other. With IRIS, these phases can be overlapped (e.g., data anal-
ysis can start as soon as the �rst simulation results are available).
IRIS’ overlapping mode, noted as IRIS-Overlap, can signi�cantly
reduce the total execution time and transform the work�ow from
a pure serialized process to a concurrent one. Figure 4 shows all
performance results.
CM1: CM1’s workload demonstrates a sequential write pa�ern.
In this test, every process �rst writes the checkpoint data (e.g.,
atmospheric points with a set of features), then data are combined
with observation data residing on the KVS and are analyzed with
a Kmeans clustering kernel. Finally the analysis results are fed
back to the simulation as an input for the next phase. As it can
be seen in Figure 4(a), the fastest simulation time is on top of the
PFS and the fastest analysis time is on top of the KVS. However,
the transfer of data between PFS and KVS dominates the overall
execution time. On the other hand, IRIS eliminates the need for
copying data and redirects the calls to the appropriate storage
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(a) CM1 performance with IRIS
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(b) Montage performance with IRIS
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(c) WRF performance with IRIS.

Figure 4: IRIS’ I/O performance.

system. �e performance gain is more than 7x for the IRIS-overlap.
�e scalability of our solution is characterized as linear. Note that
running Kmeans clustering on top of PFS is 1.7x slower on average
when compared to running on top of the KVS due to the small data
accesses that this kernel demonstrates.
Montage: Montage’s workload demonstrates a diverse pool of
tasks. As an image mosaic builder, it creates a mosaic with 10
astronomy images. It uses 8 analysis kernels, and is composed of a
total of 36 tasks. �e �rst phase is performed using MPI on top of
the PFS. �en, the analysis tasks are o�oaded to the data analysis
cluster. �ere are task dependencies and therefore the analysis
results are wri�en back to the PFS as input to the simulation tasks.
Figure 4(b) demonstrates the results of the evaluation. Similarly
to the previous application, the copying takes much of the overall
time for the base case. Since IRIS avoids the data transfer, it can
speed up the overall time by more than 4.5x and scales linearly.
Furthermore, IRIS-overlap outperforms the baseline by 6x. Note
that running the Montage Analysis kernels on top of PFS is 2.2x
slower on average when compared to running on top of the KVS.
WRF: WRF’s workload characteristics demonstrates two distinct
phases. As a weather forecast model, it �rst performs a simulation
using MPI. Data are (x,y,z) data points with several �elds such as
temperature, wind, humidity, etc. �e simulation output is copied
to the KVS and data are merged with other data collected from
sensor networks, and are then analyzed. �e analysis results are
copied back to the PFS for the next simulation phase. �is process is
repeated until the model converges. As it can be seen in Figure 4(c),
IRIS signi�cantly speeds up by 7x the overall execution time. Note
that running the WRF Analysis kernels on top of PFS is 50% slower
against running them on top of the KVS.

4.2.3 IRIS in Hybrid mode. One of the objectives of IRIS’
design is to present a uni�ed access to storage as mentioned in
Subsection 3.1. �roughout the above tests, we observed that a
PFS is sensitive to frequent small data accesses whereas a KVS
demonstrates stable performance. We implemented a hybrid mode
in IRIS where requests are being redirected according to their size
towards the appropriate storage subsystem. Our hypothesis is that
each storage system can grant higher I/O performance when faced
with a favorable workload. In other words, larger data accesses
can leverage the parallelism of PFS, and smaller ones can be placed
on the KVS due to the vertical data distribution. We collected and
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Figure 5: IRIS in Hybrid mode.

examined the I/O traces of LAMMPS and LANL App1 to understand
the I/O behavior of these two scienti�c applications. We found that
both of them have a repetitive data access pa�ern. For LAMMPS,
each process �rst writes a few requests in the order of KBs followed
by one large request of several MBs. For LANL App1 the pa�ern is
similar but it performs read operations instead of write. To test our
hypothesis, we run both applications on top of a PFS, a KVS, and
IRIS in hybrid mode, and measured the time needed to complete all
I/O requests. Each process performs 32MB of I/O, with 1536 MPI
ranks the total I/O is 48GB. IRIS redirects small data access to the
KVS and larger than the threshold to the PFS. For LAMMPS, the
threshold was set to 64KB and there were twice as many small data
accesses than large ones (i.e., favoring the KVS). For LANL App1,
the threshold was set to 128KB and the ratio of small to large data
accesses was roughly 1/4 (i.e., favoring the PFS). In Figure 5, it can be
seen that based on the workload with the above ratios, each storage
subsystem performs be�er than the other. IRIS in hybrid mode is
able to adapt to di�erent workloads and leverage the appropriate
storage solution. In our test, IRIS shows a 40-60% improvement
in performance since it avoids hurtful access pa�erns trying to
leverage the best of both storage systems.

5 RELATEDWORK
Object Stores in HPC: Object Stores have been capturing the
HPC community’s a�ention for a while now due to the advantages
they can o�er. Scalability and lower latency for small accesses
are the most important bene�ts of using Object Stores. However,
current usage of Object Stores is very limited, mostly as a sup-
plemental component, where PFS remain as the storage backend.
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IndexFS [36] and BatchFS [53] have proposed removing the meta-
data management responsibility, which is proven to be one of the
major performance bo�lenecks from the PFS, and o�oading it to
an Object Store. Similarly, FusionFS [52] implements an analo-
gous technique in which it uses a distributed hash table to store
and query metadata information. While this approach boosts the
performance of PFS by optimizing the metadata workload, it does
not introduce Object Stores as a general storage to the scienti�c
community. Applications still use the PFS as a storage solution. On
the contrary, MarFS [3] utilizes an Object Store as the storage pool
and maintains the POSIX semantics by exposing a �le system to the
applications. In this case, the Object Store replaces the PFS as the
back-end storage solution. While there are bene�ts in doing so, PFS
and Object Store are competing instead of peacefully coexisting
and complementing each other. All the above use cases of Object
Stores in HPC do not solve what we aim to achieve: a uni�cation
of the storage subsystems and the liberation of the interfaces to
allow applications to transition from a compute-intensive phase
to a data-intensive one. Both storage systems are treated equally
inside IRIS and data can be accessed from any data interface.

Object Storage Devices inside PFS: Few distributed �le sys-
tems replaced the way they store data internally. Conventional
PFSs split a �le into smaller pieces or stripes and store them sep-
arately on local �le systems of di�erent storage nodes. �is new
category of distributed �le systems replaces the local �le system
with Object Storage Devices (OSD) to distribute the smaller pieces
of data. CephFS [47] is a new type of distributed �le system that
promotes the separation of data and metadata management. It
does so by replacing the allocation tables, which PFSs usually use,
with a pseudo-random data distribution function. With this design,
they created APIs that can support both �le operations and object
operations. However, it does not support the integration of PFS
and Object Stores. PanasasFS [31, 49] uses parallel and redundant
access to OSD, per-�le RAID, distributed metadata management,
and other internal technologies to o�er a high performance dis-
tributed �le system. Since they use OSDs, their design o�oads
some administrative tasks on the disk itself making it run faster for
speci�c workloads. Similarly, OBFS [45] utilizes OSDs internally to
create a distributed �le system. Again, it is not an integration. It is
an enhancement of PFS with some object operations. To use their
system, HPC systems need to switch the entire storage installation
to their proposed solution, and applications need to be rewri�en
to be able to use their solution. In contrast, IRIS aims to bridge
any existing �le system with any object store, and users can utilize
both subsystems without modifying their code. With IRIS even
CephFS or Panasas can be bridged with any other storage solution
by adding the appropriate storage module.

MapReduce on top of PFS: �ere has been some work about
bringing MapReduce to the HPC community. In [40], the authors
created a layer on top of PVFS2 to support MapReduce workloads.
Its limitations involve limited scalability and while it allows MapRe-
duce applications to access data in PFS, it does not enable the other
direction of an MPI application accessing data on an Object Store. It
is also speci�c to PVFS2. In [32] the authors demonstrated the poten-
tial of BlobSeer in substituting HDFS to enable e�cient MapReduce
applications. BlobSeer adopts versioning instead of locking pro-
tocols to handle the concurrency issue. Both of the above works

assume the existence of one type of �le system to support both
HPC and MapReduce applications. IRIS is developed to hide the
complexity of underlying storage systems, and does not require
the modi�cation of existing �le systems. Alluxio [25] (formerly
known as Tachyon), is a distributed system enabling reliable data
sharing at memory speed across cluster computing frameworks. It
supports various existing frameworks, such as Spark, MapReduce,
and Flink. Alluxio, in a way, is the closest system to our proposal in
terms of its goals and objectives to integrate multiple programming
environments with several storage pools. However, it relies heavily
on main memory which is a valuable resource especially in HPC
systems. Additionally, its �le support (i.e., MPI-IO, HDF5, pNetCDF
etc.) is basic to simple POSIX calls without any of the optimizations
IRIS has.

6 CONCLUSIONS AND FUTUREWORK
Parallel �le systems have been the defacto storage solution in the
HPC community. On the other hand Object Stores have emerged
in recent years to serve the increasingly important data-intensive
computation paradigm. In this paper we designed and implemented
a novel I/O system, named IRIS, which can redirect I/O requests to
an integrated storage layer. By abstracting the lower level storage
system details, we managed to enable new data paths agnostic to
the underlying storage system and o�er a truly uni�ed data ac-
cess layer. �e new potential is valuable to application developers
who are now free to use any storage interface interchangeably.
Experimental evaluations show that, in addition to providing pro-
gramming convenience and e�ciency, IRIS can grant more than
7x higher performance for certain work�ows. IRIS aims to bridge
the best storage solutions of both worlds (i.e., PFS from HPC and
Object Stores from Cloud) and bring us closer to the convergence
of the HPC and Cloud ecosystems.

As a future step, we plan to incorporate a prediction model we al-
ready have built into IRIS. �is model takes as an input an I/O trace
�le (i.e., a log that describes the I/O behavior of the application),
the system con�guration along with the application arguments
(total number of processes, size of input data), and predicts which
storage system between PFS and Object Store will lead to be�er
performance. Second, if the user provides a work�ow description
in a form of a directed acyclic graph (DAG), then IRIS will be able
to adjust to the work�ow and utilize the available resources accord-
ingly. We also plan to test IRIS on a burst bu�er deployment. We
believe there is plenty of work le� towards a truly agnostic, uni�ed
data access model for the exa-scale era to come.
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