Check for
Updates

IOMax: Maximizing Out-of-Core 1/0O Analysis
Performance on HPC Systems

Izzet Yildirim Hariharan Anthony Kougkas Xian-He Sun Kathryn Mohror
Ilinois Institute of Devarajan Ilinois Institute of Ilinois Institute of Lawrence Livermore
Technology Lawrence Livermore Technology Technology National Laboratory
Chicago, IL, USA National Laboratory Chicago, IL, USA Chicago, IL, USA Livermore, CA, USA
iyildirim@hawk.iit.edu Ljvermore, CA, USA akougkas@iit.edu sun@iit.edu kathryn@llnl.gov

hariharandevi@llnl.gov
ABSTRACT

I/O analysis is an essential task for improving the performance
of scientific applications on high-performance computing (HPC)
systems. However, current analysis tools, which often use data
drilling techniques (iterative exploration for deeper insights), treat
every query independently and do not optimize column data for
data-slicing (extracting specific data subsets), resulting in subpar
querying performance. In this paper, we designed IOMax, a tool
for efficient data drilling analysis on large-scale I/O traces. IOMax
utilizes a novel query optimization technique to improve the query
performance by 8.6x while reducing the memory footprint required
for analysis by 11x. Additionally, it employs data transformation
techniques to improve data-slicing performance by up to 11.4x. In
conclusion, IOMax optimizes I/O analysis for scientific workflows
on the Lassen supercomputer, resulting in up to 7x improvement.

KEYWORDS
HPC, I/O Performance, Data Drilling, Out-of-Core Analysis

ACM Reference Format:

Izzet Yildirim, Hariharan Devarajan, Anthony Kougkas, Xian-He Sun,
and Kathryn Mohror. 2023. IOMax: Maximizing Out-of-Core I/O Analysis
Performance on HPC Systems. In Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3624062.3624191

1 INTRODUCTION

With the increasing data-intensive nature of scientific workloads,
optimizing I/O efficiency has become essential for maximizing
scientific productivity on HPC systems. Despite the theoretical
potential, a significant gap exists between the achievable and
actual I/O performance of most scientific workloads on HPC
systems [8, 13, 25]. As a result, tuning I/O performance has become
a routine task for application developers on modern HPC systems.

One popular methodology for tuning I/O performance involves
gathering I/O traces and examining patterns to detect anom-
alies [11, 12, 24]. Several tools currently exist to enhance the I/O

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

SC-W 2023, November 12—17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624191

1209

performance of workloads by utilizing data drilling techniques
to identify potential I/O bottlenecks [11, 16, 18], working with
trace data that can fit in memory. Recently, traces from scientific
workloads have reached terabytes in size, necessitating out-of-core
I/O analysis (analysis of data too large to fit in memory by
means of distributed computing) to understand their behavior,
as demonstrated by Devarajan et al. [5]. As all the above work
illustrates, data drilling techniques in I/O analysis are important
in improving I/O performance for large-scale scientific workloads.

However, data drilling is a complex task that faces two major
challenges. Firstly, data drilling often involves accessing the same
data multiple times by drilling in or up the dataset. Existing
analysis tools treat each query independently, resulting in poor
performance due to the lack of global query optimizations [1].
Secondly, as part of the data drilling process, records within the
dataset are often sliced and grouped based on dataset indices.
Current analysis tools utilize the columns in the trace format for
this purpose, which are efficient for trace production but inefficient
for analysis purposes. For example, indexing on string columns like
file names can be 11.4x slower than indexing on integer columns
(Figure 6). These challenges highlight the need for an improved
methodology to perform data drilling on large-scale I/O traces.

In this work, we present IOMax, a query optimization tool
designed to enhance the efficiency of data drilling on large-scale I/O
traces. IOMax incorporates three novel techniques to achieve this
goal. First, the most important technique, is the query reduction that
involves minimizing redundant I/O costs by intelligently construct-
ing an execution plan and reducing the number of I/O operations
needed to process a query. Second is the in-memory caching,
where we decrease overall query time by storing the aggregate
view of the dataset in distributed memory. Finally, IOMax analyzes
the structure and format of the I/O traces and performs datatype
conversions and encodings to enhance data drilling performance.
The contributions of this work can be summarized as follows:

(1) Design of IOMax, a tool that improves data drilling analysis
performance by up to 7x on large-scale I/O traces.

(2) Designing a query engine that builds a novel cache-aware
query optimization algorithm to improve data drilling performance.
(3) Developing a dataset validator and transformer that
detects and optimizes dataset inefficiencies for I/O analysis.

2 BACKGROUND & RELATED WORK

In this section, we provide an overview of data drilling, I/O
analysis in HPC systems, and query optimizations in databases,
highlighting the challenges and existing methods in these areas.

https://orcid.org/0000-0003-3513-0764
https://orcid.org/0000-0001-5625-3494
https://orcid.org/0000-0001-5625-3494
https://orcid.org/0000-0003-3943-663X
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1366-1655
https://doi.org/10.1145/3624062.3624191
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3624062.3624191
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624191&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12-17, 2023, Denver, CO, USA

300 3.0 _
@
R -t
'@ 200 20 &
2 a3 g &
£ 150 Q4 15 3
z 100 =05 Out of memory 1.0 g
S .
S during data load 05 g
>
0 .——-—// X 00 >
Type Pandas Dask Pandas Dask Pandas Dask é

5m 25m 125m
of Records

Figure 1: Performing out-of-core data drilling queries against
datasets of different sizes in a memory-restricted environ-
ment demonstrates the need for a query and dataset opti-
mization for distributed analysis.

2.1 Data Drilling & Optimizations in Databases

Data drilling is a process of exploring data at different levels of
detail through an iterative analysis. This iterative exploration
helps uncover patterns, relationships, and anomalies that may
not be apparent at a higher level. However, working with large
datasets involves an inherent requirement for aggregation and
join operations that necessitates multiple passes through the same
data. To address this challenge, numerous methods have been
proposed to optimize query execution plans in databases and data
warehousing, all aimed at minimizing redundant work [1, 10, 23].
In our work, we build upon these existing methods by tailoring
them to the unstructured data format of I/O traces. The primary
reason why existing algorithms cannot be applied is that I/O
analysis involves selection of specific columns to discover and
gain insights. Traditional database systems designed to work with
structured data are inefficient for this purpose.

2.2 I/0 Analysis in HPC Systems

Currently, I/O analysis involves the use of multiple tools to
examine the individual components of I/O systems. These tools
include performance analysis, measurement, and visualization
tools. Of those, Darshan [3] is one of the most widely used I/O
profiling tool and a couple of companion tool was developed to
analyze its traces, such as PyDarshan [18], DXT Explorer [2], and
VaniDL [4]. Similarly, Recorder-viz [19] provides visualization for
Recorder [22], an I/O tracing tool.

Studies such as UMAMI [12], TOKIO [11], and IOMiner [24]
utilize aforementioned tools to detect I/O problems. Typically, such
analysis is conducted through data drilling. It involves either run-
ning queries directly on the generated logs or manually iterating
through them. However, both of these approaches have proven to
be highly inefficient for data analysis (Figures 3-5). Although there
is a study [5] that closely relates to our work; it lacks query, caching,
and format optimizations, which we incorporate in our approach.

3 MOTIVATION

I/O analysis on large-scale I/O traces entails several design consid-
erations that the existing tools may fall short in addressing. First,
the tool should support out-of-core analysis, as the size of scientific
workloads’ I/O traces continues to grow, surpassing the available
memory capacity. Second, it should minimize redundant I/O costs
by reducing the number of I/O operations required for each query.
Additionally, the tool should reduce the memory footprint of the

1210

1 Yildirim et al.

’ IOMax
r 1) Queries
— (@ Dataset + Metadata @ a ErE
' DatasetValidator SR
i Detect Issues Build Aggregate
! View
1 i@ Issues
' DatasetTransformer @ . Query
1
, Dtype Optimization Cache Aggregate Results
' View
-
1
| Derved Columns
Config (3 Optimized Dataset

Figure 2: High-level design of IOMax showcasing the dataset
optimization process and the query execution flow from user
inputs to query results.

analysis to ensure efficiency and scalability. Finally, it should opti-
mize inefficiencies present in I/O traces, such as inefficient datatype
usage and slow indexing.

Figure 1 illustrates the impact of limited memory resources on
performing data drilling on large-scale I/O traces and the need for
a query and dataset optimization. The figure shows the query times
(y1-axis) and query memory usage (y2-axis) of five data drilling
queries against different datasets sizes. In the figure, an in-memory
analysis approach (Pandas) fails to load the largest dataset due
to exceeding the available memory, underscoring the need for
out-of-core analysis. Another notable observation is the similar
query times and memory usage for individual queries, indicating
the repetitive effort involved in treating each query independently.
Therefore, there is a need for a solution that performs query
optimizations for out-of-core data drilling analysis.

4 IOMAX

The IOMax tool is aimed at enhancing the efficiency of data
drilling analysis on large-scale I/O traces. It is implemented as a
Python library and specifically designed for I/O analysis purposes.
While the methodology is generalizable, the tool currently
specializes in enhancing I/O analysis. IOMax provides users with
three main components: QueryEngine, DatasetValidator, and
DatasetTransformer. The QueryEngine constructs an execution
plan that leverages query reduction and in-memory caching tech-
niques to minimize redundant I/O costs. The DatasetValidator
identifies trace-format optimizations that can improve data-slicing
performance on I/O traces. Lastly, the DatasetTransformer
automatically applies the trace-format optimizations suggested
by the DatasetValidator.

Figure 2 shows the high-level design of IOMax. The tool expects
three main inputs from the user: Dataset, Metadata, and Queries.
The Dataset is the raw I/O traces. The Metadata includes the in-
dices and columns that need to be optimized. The Queries represent
a set of queries for which the user wants to optimize. Initially, the
Dataset and the Metadata are passed to the DatasetValidator to
detect issues (D). If any issues are detected, both the Dataset and
the detected issues are then passed to the DatasetTransformer
(®@). The DatasetTransformer performs several optimizations,
including datatype correction, encoding, deriving columns, and
applying user-defined optimizations. Next, the optimized DataSet
and the Queries are forwarded to the QueryEngine (), which in

I0Max: Maximizing Out-of-Core I/O Analysis Performance on HPC Systems

turn, builds the aggregate view, caches it, and executes the query
set against it (@-(®). Finally, the user receives the results (®).

4.1 Query Engine

As discussed earlier, we argue that running queries directly on
the generated logs or manually iterating through them are highly
inefficient and unnecessary. IOMax introduces the QueryEngine,
which is responsible of building a cache-aware query execution
plan to address this problem. The creation of the execution plan
comprises three steps:

4.1.1 Building Aggregate View. The aggregate view serves as an
intermediary representation of the raw dataset, with which all the
queries can be resolved. The algorithm to create the aggregate view
is outlined in Algorithm 1. The input and output are described
in the algorithm. Initially, we identify the keys (corresponding
columns) in the query set (line 2). For example, the keys of the
query in Algorithm 2, line 11, are io_op and duration. We then
combine these keys with the indices provided to the algorithm
(line 3). These indices are selected from the dataset columns and
represent the resulting aggregate view’s indices. Given our focus
on I/O analysis in this work, typical indices include duration,
file_name, and proc_name. Next, we determine the aggregation
methods for each key in the combined set of keys (line 4). For
instance, the I/O operation (io_op) column is aggregated using the
count method, while the duration column is aggregated using
the sum method. Finally, we group and aggregate the raw dataset
using the determined aggregation methods and the combined set
of keys to create the aggregate view (line 5). This approach ensures
that the aggregate view includes only the necessary indices and
columns, resulting in significantly faster query resolution and a
substantial memory footprint reduction.

Algorithm 1: Building & Caching Aggregate View

Input: A dataset DS, a set of indices IX, a set of queries QS
Output: An aggregate view
1 begin
2 QSKeys « Find keys in the query set QS
3 Keys < Union IX and QSKeys into a single set
4 AggM < Determine aggregation method for each Keys
5 AggView « Group-aggregate DS by Keys using AggM

6 Cache AggView to improve performance
7 return AggView
s end

4.1.2 Caching Aggregate View. When dealing with large datasets
or complex analytical operations, cache optimization becomes
crucial for optimizing query performance. One such complex
operation is data drilling, which typically involves multiple

iterations of queries, aggregations, or filtering on large datasets.

By caching intermediate results, subsequent iterations can benefit
from the cached data, avoiding redundant computations and
reducing overall processing time. We utilize in-memory caching
as our primary cache optimization technique, as it involves storing
frequently accessed data in a fast and easily accessible location.

1211

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Column Misinferred | Transformed | Reduction
I/O Category | 32-bit Integer | 8-bit Integer ~4x
Access Pattern | 32-bit Integer Boolean ~4x

Table 1: Memory footprint reduction for commonly misin-
ferred datatypes.

Column Original | Transformed | Reduction
File Name String 64-bit Integer 10-20x
Process Name String 64-bit Integer 10-20x
I/O Function String Category 60-80x

Table 2: Memory footprint reduction for string columns.

4.1.3 Query Resolving. Once the aggregate view is built and
cached, the final step in the creation of the execution plan is the
query-resolving process. This process involves two steps: First, we
parse the queries to identify the requested columns and operations.
For example, the requested columns in Algorithm 2, line 11, are
io_ops_per_sec, io_op and duration; along with the operations
count and sum. At this stage, it is unnecessary to validate the
requested columns since we initially built the aggregate view
with these columns in mind. Second, we create an execution plan
which allows us to execute these operations in a single request,
thereby avoiding redundant work and improving overall query
performance.

4.2 Dataset Validator and Transformer

Raw I/O traces have a specific format that is not immediately
suitable for analysis or data drilling. This is expected because the
primary focus of I/O tracing tools is to capture and record events
accurately rather than optimizing them for analysis purposes.
However, when working with large-scale I/O traces, overlooking
datatype inference can result in significant memory consumption
penalties. For instance, if a categorical data column in an I/O trace
is mistakenly inferred as a 32-bit integer, it would consume 4x
more memory than necessary (Table 1).

IOMax introduces the DatasetValidator to detect issues
related to datatype inference, binary encoding, and string encoding
within the I/O traces. The validator compares the inferred datatypes
of the columns with the expected datatypes and raises issues if any
inconsistencies are found. In Table 1, you can see the original and
transformed datatypes of commonly misinferred columns. Addi-
tionally, the validator verifies the encoding scheme used for strings
and identifies malformed or incorrectly encoded strings. It also
detects characters that may potentially cause issues during analysis.

Once the issues are identified, they are then passed to the
DatasetTransformer along with the Dataset. The transformer
corrects misinferred datatypes by converting them into the
expected datatypes. Table 1 provides examples of commonly
misinferred datatypes and the resulting memory reduction
achieved by correcting them. The Boolean columns, such as the
Access Pattern column in Table 1, are also binary-encoded for
dimensionality reduction. In Table 2, we provide examples for
string columns and show the observed memory reductions (in the
I/O traces of the workflows that will be discussed in Section 5.1.2).
Memory reduction for string columns depends on the number of
unique values they contain, as their lengths can vary. When a string

SC-W 2023, November 12-17, 2023, Denver, CO, USA

column has a relatively small set of unique values compared to the
total number of records, we use categorical encoding, as it results
in the most significant memory reduction. In I/O traces, the /O
Function column typically has 10-20 unique function names, such
as open and close, which makes it ideal for categorical encoding.

In addition, as we focus on I/O analysis, we give special attention
to string columns such as File Name and Process Name. These
columns inherently contain hierarchical information within each
value. For example, the File Name column includes the complete
file path, allowing extraction of file directories as well. In this
study, we employ a custom hashing algorithm designed to process
a string value, such as a file path, and calculate a unique hash value
by considering specific components of that value. The resulting
hash value serves as an identifier for the string value, allowing
for efficient indexing, comparison, and sorting operations. These
operations are instrumental in data-slicing.

4.3 APIs and Usage

In this section, we provide the description of the Python API of
IOMax and its usage. At present, there are two main APIs that need
to be discussed: the Dataset Optimization API and the Query APL

4.3.1 Dataset Optimization APIl. The Dataset Optimization API
allows users to optimize their I/O traces for efficient analysis. Al-
gorithm 2 demonstrates the usage of this API in lines 4 to 9. The
process begins by importing the IOMax tool (line 2) and loading
the dataset using the load_traces() function (line 4). Next, users
determine the indices and the column types for optimization (line 6-
7). The dataset is then optimized using the ds.optimize() method,
with the indices and column types as inputs (line 9). This optimiza-
tion step enhances the dataset’s performance and efficiency for
subsequent analysis tasks.

4.3.2 Query API. The Query API enables users to define and exe-
cute queries on the optimized dataset. Algorithm 2 demonstrates
the usage of this APIin lines 10 to 15. Users first define their queries
using the illustrated query syntax (lines 11-12). These queries are
stored in a dictionary for easy access (line 13). To execute the
queries, the ds.query() method is utilized, taking the query dic-
tionary as input (line 15). This triggers the execution of the queries
and retrieves the results. In the provided algorithm, the result of
a specific query (q1) is accessed using the query name as the key
(line 17).

5 EVALUATION
5.1 Setup and Software

5.1.1 Hardware. We run the experiments on the Lassen supercom-
puter at Lawrence Livermore National Laboratory (LLNL) [7]. A
23-petaflop IBM Power9 system consists of 795 nodes connected
with a Mellanox 100 Gb/s EDR InfiniBand network, and a 24 PiB
IBM Spectrum Scale file system (also known as GPFS). Individual
Lassen nodes consist of two IBM POWER9 CPUs (IBM AC922
servers) with 256GB of system memory.

5.1.2 Workloads. We utilize micro-benchmarks to demonstrate
performance metrics related to the designed components. Fur-
thermore, we incorporate four scientific HPC workflows: 1000

1212

1 Yildirim et al.

Algorithm 2: Usage of IOMax

1 # Import IOMax

2 import iomax

3 # Load I/0 traces

4 ds = iomax.]oad_traces(log_dir)

5 # Determine indices & column types

"o

indices = ["duration", "file_name", "proc_name"]

a

column_types = {"duration": float}
Optimize dataset

N

o

©

ds.optimize(indices, column_types)

10 # Prepare queries

11 q1 = "io_ops_per_sec = count(io_op) / sum(duration)”

12 q2 = "metadata_ratio = count(metadata_op) / count(io_op)"
13 queries = dict(ql=ql, q2=q2)

14 # Execute queries

15 results = ds.query(queries)

16 # Read individual query results

17 result = results["q1"]

Workload # of Records | # of Files | # of Processes
1000 Genomes | 715,248,240 21,268,291 | 2,712

Montage 12,346,353 19,680 11,488

HACC 162,587 2,562 1,281

CM1 27,463 775 1,280

Table 3: The numbers of records, files, and processes of sci-
entific workflows used in the evaluation.

Genomes [21] (a workflow aids in identifying mutational overlaps
to uncover potential disease-related mutations), Montage [9]
(a mosaics-building tool extensively employed in astrophysics),
HACC [6] (a cosmology workload), and CM1 [20] (an atmospheric-
simulation workload). Table 3 shows the numbers of records, files,
and processes of the workflows.

5.1.3 Tools. We use Pandas [14], most widely used Python data
analysis library, and Dask [17], a Python parallel computing library
for analytics, as our main analysis tools. We utilize Dask for our out-
of-core analysis requirements, as it partitions large datasets into
manageable chunks, enabling processing on available CPU cores or
distributed clusters. One notable benefit is that the Dask DataFrame
APl is almost identical to the Pandas DataFrame API This similar-
ity allows us to perform data manipulations using familiar Pandas
functions and syntax. As a result, we can execute identical queries
using both Pandas and Dask, ensuring consistency in our analyses.

We use Recorder [22] as our tracing tool, as it provides a
fine-grained format of I/O events, which is better suited for our
query requirements compared to the aggregated statistical format
of Darshan. However, since raw traces are not efficient for analysis
purposes [5] and are incompatible with both Pandas and Dask,
we first convert them into the Parquet file format [15], a column-
oriented data file format designed for efficient data analysis. This
conversion process is carried out by the DatasetTransformer,
written in C, as part of our dataset optimizations.

I0Max: Maximizing Out-of-Core I/O Analysis Performance on HPC Systems

Dataset | # of Records | File Size | Memory Size
1.2 GB 2.4GB
25m 25 million 5.9 GB 12 GB
125m 125 million 30 GB 60 GB

5m 5 million

Table 4: The file and memory sizes of the datasets used in the
Data Reduction evaluations.

600 3.0
Q1 Q2 g

500 2.5
= Q3 Q4 =
o 400 Q5 Q6 2.0 9
£ -7 =08 J 3

= 300 1.5
> Q9 Q10 || [l
g 200 Base ——IOMax 10 ¢
(e} Q
100 = /; 0.5 §>
04+ 2= A X 003
Base IOMax Base IOMax Base IOMax Base IOMax Base IOMax Base IOMax]

Pandas Dask Pandas Dask Pandas Dask
Type
5m 25m 125m

of Records

Figure 3: Comparison of query times and memory footprints
between unoptimized (Base) and optimized (IOMax) query
sets. Query times are stacked, while memory footprints are
summed.

5.2 Data Reduction

To assess the effectiveness of our QueryEngine to address the main
considerations mentioned in the motivation section, which are sup-
porting out-of-core analysis, minimizing redundant I/O cost, and re-
ducing analysis memory usage, we conducted an experiment using a
micro-benchmark. In this study, we utilize Pandas’ groupby and agg
methods to achieve this. The groupby method groups the dataset us-
ing specific columns (in our case, keys), and the agg method allows
us to specify a particular aggregation method for each key. This
benchmark executes ten queries across various datasets with 5 mil-
lion, 25 million, and 125 million records. The datasets were derived
from real-world Recorder traces, and the queries were specifically
designed to emulate real-world I/O analysis scenarios, such as deter-
mining I/O operations per second or transfer sizes within a specified
time range as used by data drilling analysis [5, 11]. File and memory
sizes of the datasets are shown in Table 4.

To accurately replicate the conditions of out-of-core analysis,
we executed the benchmark on a compute node with a memory
restriction of 20GB. The results are shown in Figure 3. The x-axis
depicts different dataset scales for the unoptimized (Base) and opti-
mized (IOMax) query sets, which were run using Pandas and Dask.
In the optimized version, we create the aggregate view in addition
to the initial query (Q1I) to facilitate the execution of subsequent
queries. On the other hand, the unoptimized version ran all queries
sequentially, similar to existing toolsets. The y1-axis shows the total
time taken for query execution in seconds. The y2-axis represents
the total memory footprint of the query sets in gigabytes.

The findings indicate that the execution time of the unoptimized
queries increases linearly, approximately 6x per dataset scale. Due
to the memory restriction, the 125 million record dataset with a
memory footprint of 60GB cannot fit in memory, and as expected,
both the unoptimized and optimized query sets using Pandas
fail. Dask manages to successfully complete the execution of an
unoptimized query set by loading and processing data in smaller,
manageable chunks that fit into memory. Additionally, we observe

1213

SC-W 2023, November 12-17, 2023, Denver, CO, USA

30 35000 -
W Python
2 B 1 1 30000 | c 29100
2] Base z 25000 -
> I0Max >
g £ 20000 4
= 15 1 1 =
z b § 15000 4
310 1 B
£ 10000
S 5720
1 5000 -
1150
o- 0 J mm
Simple Medium Hard 200k im 5m

Query Complexity # of Records

Figure 4: Cache-optimized Figure 5: Python scales lin-
query engine performs 1.7x early, while C exhibits a con-
faster. stant iteration time.

that the optimized version has a memory footprint that is 8.5x
smaller than the unoptimized version.

5.3 Cache Optimization

To assess the effectiveness of our cache optimization in the
QueryEngine, we conducted an experiment using the I/O traces
of the 1000 Genomes workflow. These traces contain more than
715 million I/O events from 3 thousand processes. During the
experiment, we ran queries with different levels of complexity on
both the unoptimized (Base) and cache-optimized (IOMax) query
engines. In this study, the Simple queries are single aggregations
over single columns (e.g. sum(duration)), the Medium queries are
multiple aggregations over single columns (e.g. sum(duration)
and max(duration)), and the Hard queries are multiple aggrega-
tions over multiple columns. It’s important to note that the dataset
index remains constant across all query complexities and is based
on the Process ID (proc_id) column.

The results are presented in Figure 4, where the x-axis represents
the query complexities and the y-axis represents the total time
taken for query execution in seconds. The findings demonstrate
that the cache-optimized query engine performs 1.7x faster than
the unoptimized version. Additionally, the cache-optimized query
engine exhibits greater consistency with a standard deviation of
400ms, in contrast to the unoptimized version which has a standard
deviation of 1.13s.

5.4 Iterative Queries

Performing I/O analysis and data drilling typically involves iterative
operations to manipulate data and identify patterns. One common
task is determining whether files in an I/O trace are accessed
sequentially or randomly. This involves tracking the offsets of
seek operations and other related operations, usually done by
iterating over the data. Python is commonly used for these iterative
operations as they are part of the analysis process. In our design, the
DatasetTransformer serves as a preprocessor responsible for han-
dling such data manipulations. To evaluate the performance of both
approaches, we conducted an experiment using a micro-benchmark.
The benchmark involved iterating through various datasets, in-
cluding 200 thousand, 1 million, and 5 million records. All datasets
were created using the same approach outlined in Section 5.2.
The results are shown in Figure 5. The figure illustrates dataset
scales on the x-axis and the corresponding total iteration time in
milliseconds on the y-axis. The findings reveal a linear increase
in Python’s iteration time, approximately 5x per scale. This can be

SC-W 2023, November 12-17, 2023, Denver, CO, USA

2.0 2.0K
. Str Time Int Time z
215 ~B-Str Memory —&—Int Memory 1.5K 7
H 2
£10 = LOK =
- <]
@ = £
305 0.5k &
C ~ - —3
0.0 i 0.0K
Datatype Str Int Str Int Str Int
2460 files 4920 files 9840 files

of Files

Figure 6: String indices, such as file names, slower and more
memory-intensive than integer indices.

attributed to Python’s inherent overhead of high-level abstractions
and the limitation of performing vectorized operations when
iterating over individual records. In contrast, C exhibits a constant
iteration time, averaging around 50ms. Therefore, we conclude
that for large-scale I/O traces, iterative operations should be
avoided using Python and should instead be performed during the
preprocessing stage.

5.5 Datatype Performance

To evaluate the effectiveness of our data transformation, we
performed an experiment involving range queries on string (Str)
and integer (Int) indices using the I/O traces from the Montage
workflow. These traces contain over 12 million I/O events of 19680
unique files. The experiment aimed to identify the top 1/8, 1/4,
and 1/2 of the most accessed files by executing range queries on
two different indices. We leveraged the loc method of Pandas’
DataFrame API to accomplish this. The loc method is to access
a group of rows by labels. In our case, the labels are file_names
for string indices and file_ids for integer indices. The file_ids
are created using the hashing algorithm described in Section 4.2.
The experimental results are reported in Figure 6. In the figure,
the x-axis shows the subset of files being accessed using both string
and integer indices. The y1-axis shows the total time taken to locate
the files in seconds. The y2-axis represents the total memory foot-
print of the indices in bytes. The results show that accessing subsets
with string indices exhibits a linear increase in access time relative
to the number of files, resulting in an 11.4x slower performance
compared to integer indices. On the other hand, accessing the subset
of files through integer indices shows a nearly constant access time,
averaging around 15ps. This is mainly due to the efficient represen-
tation and memory access patterns of integer indices (and the cache
optimization techniques employed by Pandas for integer indexing).
Furthermore, string indices incur a memory footprint 13.1x larger
than that of integer indices due to their variable-length nature.

5.6 Scientific Workflows

We evaluated the effectiveness of our methodology by conducting
a similar evaluation to the Data Reduction evaluation described
in Section 5.2. However, in this case, we used real-world scientific
workflows as outlined in Table 3. Specifically, we utilized CM1
and HACC to showcase the in-memory performance of our tool,
and 1000 Genomes and Montage to demonstrate its out-of-core
performance. Prior to the evaluation, we optimized these datasets
following the process described in Section 4.2.

The results are presented in Figures 7 and 8. As shown in the
figures, IOMax significantly improves the performance of both

1214

1 Yildirim et al.
30 03 _
Q1 Q2 Q3 g
25 Q4 Qs Q6 =
— o
% 20 - Q7 Q8 Q9 0.2 g
£ Q10 -B-Base —A—10Max =)
15 g
z £
5 __!__/——/ 013
—_— -~
| _ BE = g
L = = . == g

0 0.0

Base I0Max Base I0Max Base I10Max Base I0Max
Type Pandas Dask Pandas Dask

cM1 HACC
Scientific Workloads

Figure 7: IOMax achieves up to 10x improvement in in-
memory data drilling analysis of real-world scientific work-
flow I/O traces.

Q1 Q2 mmQ3 g
25K Q4 -5 =06 25K =
Lok | =mQ7 ag Q9 20K §
£ Q10 -B-Base ——|0Max :>’_
£ 15K 15k 2
g £
é 10K 1ok &
5K — —_ﬂ—’/-" 0.5K g
S
oK _— = X 0.0k ©
Base I0Max Base I0Max Base I0Max Base I0Max
Type Pandas Dask Pandas Dask
Montage 1000 Genomes

Scientific Workloads
Figure 8: IOMax achieves up to 7x improvement in out-of-
core data drilling analysis of real-world scientific workflow
I/0O traces.

in-memory and out-of-core analyses, achieving up to 10x and 7x
improvements respectively. Furthermore, it reduces the memory
footprint of queries by 5x and 3x respectively. The results validate
IOMax’s effectiveness in performance improvements and memory
footprint reduction for real-world scientific workflows.

6 CONCLUSION

In this work, we addressed the limitations of current analysis tools,
which often lack optimization for data-slicing and treat queries
independently, by introducing IOMax, a tool that improves data
drilling analysis performance on large-scale I/O traces. IOMax’s
novel query engine, cache-aware execution plan, and dataset opti-
mizations achieved up to 8.6x performance improvement and an 11x
reduction in memory usage. Furthermore, our transformer improves
data-slicing performance by 11.4x. Testing on the Lassen supercom-
puter showcased the potential of IOMax, demonstrating up to 7x
improvement in I/O analysis of real-world scientific workflows.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. This material is based upon work
supported by the U.S. Department of Energy, Office of Science, Of-
fice of Advanced Scientific Computing Research under the DOE
Early Career Research Program (LLNL-CONF-852637). Also, the
material is based upon work supported by the National Science
Foundation under Grant no. NSF OAC-2104013, OCI-1835764, and
CSR-1814872.

I0Max: Maximizing Out-of-Core I/O Analysis Performance on HPC Systems

REFERENCES

(1]

(2]

=

(9]

[10

[11]

[12]

[13]

[14]
[15]
[16]

==
ot

[19]
[20]

[21]

[22]

[23]

Ashish Gupta, Venky Harinarayan, and Dallan Quass. 1995. Aggregate-Query
Processing in Data Warehousing Environments. In Proc. of Int. Conf. on Very
Large Data Bases (1995), 358-369.

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob
Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck Detection and Tuning:
Connecting the Dots using Interactive Log Analysis. In 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop (PDSW). IEEE, St. Louis, MO, USA,
15-22. https://doi.org/10.1109/PDSW54622.2021.00008

Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-
ine Riley. 2009. 24/7 Characterization of petascale I/O workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, New Orleans,
LA, USA, 1-10. https://doi.org/10.1109/CLUSTR.2009.5289150

Hariharan Devarajan. 2020. VaniDL. https://github.com/argonne-lcf/vanidl
Hariharan Devarajan and Kathryn Mohror. 2022. Extracting and characterizing
1/0 behavior of HPC workloads. In 2022 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, Heidelberg, Germany, 243-255. https://doi.org/10.
1109/CLUSTER51413.2022.00037

Katrin Heitmann, Thomas D. Uram, Hal Finkel, Nicholas Frontiere, Salman Habib,
Adrian Pope, Esteban Rangel, Joseph Hollowed, Danila Korytov, Patricia Larsen,
Benjamin S. Allen, Kyle Chard, and Ian Foster. 2019. HACC Cosmological Simu-
lations: First Data Release. The Astrophysical Journal Supplement Series 244, 1
(Sept. 2019), 17. https://doi.org/10.3847/1538-4365/ab3724

HPC @ LLNL. 2023. Lassen. https://hpc.llnl.gov/hardware/compute-platforms/
lassen

Mihailo Isakov, Eliakin Del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. HPC I/O Throughput
Bottleneck Analysis with Explainable Local Models. In SC20: International Con-
ference for High Performance Computing, Networking, Storage and Analysis. IEEE,
Atlanta, GA, USA, 1-13. https://doi.org/10.1109/SC41405.2020.00037

Joseph C. Jacob, Daniel S. Katz, G. Bruce Berriman, John C. Good, Anastasia C.
Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei Hui Su, Thomas A.
Prince, and Roy Williams. 2009. Montage: a grid portal and software toolkit for
science-grade astronomical image mosaicking. International Journal of Computa-
tional Science and Engineering 4, 2 (2009), 73. https://doi.org/10.1504/IJCSE.2009.
026999

Matthias Jarke and Jurgen Koch. 1984. Query Optimization in Database Systems.
Comput. Surveys 16, 2 (June 1984), 111-152. https://doi.org/10.1145/356924.
356928

Glenn K Lockwood, Nicholas] Wright, Shane Snyder, Philip Carns, George
Brown, and Kevin Harms. 2018. TOKIO on ClusterStor: Connecting Standard
Tools to Enable Holistic I/O Performance Analysis. Proceedings of the 2018 Cray
User Group (2018).

Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright, Shane Snyder,
Kevin Harms, Zachary Nault, and Philip Carns. 2017. UMAMI: a recipe for
generating meaningful metrics through holistic I/O performance analysis. In
Proceedings of the 2nd Joint International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems - PDSW-DISCS ’17. ACM Press, Denver,
Colorado, 55-60. https://doi.org/10.1145/3149393.3149395

Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study
of I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing. ACM,
Portland Oregon USA, 33-44. https://doi.org/10.1145/2749246.2749269
Open-source. 2008. Pandas. https://pandas.pydata.org/

Open-source. 2013. Apache Parquet. https://parquet.apache.org/
Open-source. 2015. Darshan-util. https://www.mcs.anl.gov/research/projects/
darshan/docs/darshan-util.html

Open-source. 2015. Dask. https://www.dask.org/

Open-source. 2020. PyDarshan. https://www.mcs.anl.gov/research/projects/
darshan/docs/pydarshan/index.html

Open-source. 2021. Recorder-viz. https://github.com/wangvsa/recorder-viz
Hafizur Rahman, Michel M. Verstraete, and Bernard Pinty. 1993. Coupled surface-
atmosphere reflectance (CSAR) model: 1. Model description and inversion on
synthetic data. Journal of Geophysical Research 98, D11 (1993), 20779. https:
//doi.org/10.1029/93JD02071

The 1000 Genomes Project Consortium. 2010. A map of human genome variation
from population-scale sequencing. Nature 467, 7319 (Oct. 2010), 1061-1073.
https://doi.org/10.1038/nature09534

Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient Parallel I/O Tracing and Analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, New Orleans, LA, USA, 1-8. https://doi.org/10.1109/IPDPSW50202.2020.
00176

Min Wang and Bala Iyer. 1997. Efficient Roll-Up and Drill-Down Analysis in
Relational Databases. SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery (1997), 39-43.

1215

SC-W 2023, November 12-17, 2023, Denver, CO, USA

[24] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas Wright, and

[25

Suren Byna. 2018. IOMiner: Large-Scale Analytics Framework for Gaining Knowl-
edge from /O Logs. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, Belfast, 466-476. https://doi.org/10.1109/CLUSTER.2018.00062
Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and
Norbert Podhorszki. 2012. Characterizing output bottlenecks in a supercomputer.
In 2012 International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, Salt Lake City, UT, 1-11. https://doi.org/10.1109/SC.
2012.28

https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/CLUSTR.2009.5289150
https://github.com/argonne-lcf/vanidl
https://doi.org/10.1109/CLUSTER51413.2022.00037
https://doi.org/10.1109/CLUSTER51413.2022.00037
https://doi.org/10.3847/1538-4365/ab3724
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.1504/IJCSE.2009.026999
https://doi.org/10.1504/IJCSE.2009.026999
https://doi.org/10.1145/356924.356928
https://doi.org/10.1145/356924.356928
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.1145/2749246.2749269
https://pandas.pydata.org/
https://parquet.apache.org/
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.dask.org/
https://www.mcs.anl.gov/research/projects/darshan/docs/pydarshan/index.html
https://www.mcs.anl.gov/research/projects/darshan/docs/pydarshan/index.html
https://github.com/wangvsa/recorder-viz
https://doi.org/10.1029/93JD02071
https://doi.org/10.1029/93JD02071
https://doi.org/10.1038/nature09534
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/CLUSTER.2018.00062
https://doi.org/10.1109/SC.2012.28
https://doi.org/10.1109/SC.2012.28

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Data Drilling & Optimizations in Databases
	2.2 I/O Analysis in HPC Systems

	3 Motivation
	4 IOMax
	4.1 Query Engine
	4.2 Dataset Validator and Transformer
	4.3 APIs and Usage

	5 Evaluation
	5.1 Setup and Software
	5.2 Data Reduction
	5.3 Cache Optimization
	5.4 Iterative Queries
	5.5 Datatype Performance
	5.6 Scientific Workflows

	6 Conclusion
	Acknowledgments
	References

