
HReplica: A Dynamic Data Replication Engine with
Adaptive Compression for Multi-Tiered Storage

Hariharan Devarajan, Anthony Kougkas, Xian-He Sun
Illinois Institute of Technology, Department of Computer Science

hdevarajan@hawk.iit.edu, {akougkas, sun}@iit.edu

Abstract—As the diversity of big data applications increases,
their requirements diverge and often conflict with one other.
Managing this diversity in any supercomputer or data center
is a major challenge for system designers. Data replication is a
popular approach to meet several of these requirements, such as
low latency, read availability, durability, etc. This approach can
be enhanced using new modern heterogeneous hardware and soft-
ware techniques such as data compression. However, both these
enhancements work in isolation to the detriment of both. In this
work, we present HReplica: a dynamic data replication engine
which harmoniously leverages data compression and hierarchical
storage to increase the effectiveness of data replication. We have
developed a novel dynamic selection algorithm that facilitates the
optimal matching of replication schemes, compression libraries,
and tiered storage. Our evaluation shows that HReplica can
improve scientific and cloud application performance by 5.2x
when compared to other state-of-the-art replication schemes.

Index Terms—data replication, dynamic, selection algorithm,
multi-tiered, data compression, intelligent selection, dynamic
programming, cloud application, scientific application, big data.

I. INTRODUCTION

Modern scientific and cloud applications are extremely
diverse, ranging from cosmology [1], astrophysics [2],
fusion [3] simulations to Alice high-energy physics [4],
bioinformatics, and computational finance applications [5].
Scientific discovery is driven by the ability to efficiently
and reliably process data with high-throughput and low
latency [6]. Data replication, a widely used technique which
plays a pivotal role in achieving these goals [7], can enable
several features such as a) low-latency read operations in
Alice HEP, b) fault tolerance in cosmology application
MADCAP, and c) load balancing for VORPAL plasma
physics simulation. Each data replication strategy aims to
provide a unique set of features and constraints, giving high
performance and reliability to the application. Based on the
methodology adopted for replication, different features with
constraints could be obtained. Examples include minimize
read latency while maximizing write bandwidth [8], minimize
read interference while maximizing write latency [9], and n
fault tolerance while minimizing storage cost [10].

Researchers further explore data replication due to two
orthogonal developments which have directly influenced data
replication schemes. First, the invention of new storage hard-
ware devices, where additional levels of memory and storage
are stacked in a hierarchy. This is creating an architectural

trend where modern supercomputers and data centers have
heterogeneous storage devices to provide low latency and high
throughput to users. In most cases, these storage devices are
tiered in a hierarchy and act as a fast cache for the application.
For example, the Cori supercomputer at the National Energy
Research Scientific Computing Center (NERSC) employs an
SSD-based burst buffer technology [11]. Oak Ridge National
Lab’s Summit also uses fast local NVMe storage for buffer-
ing [12]. Data centers of hyperscalers [13] such as Google,
Amazon, and Microsoft use fast node-local devices as a cache
to speed up data access for applications. This new architectural
trend has led data replication schemes to adapt to this hetero-
geneous [14]–[16] environment. These schemes build a cost
model around the performance and capacity of storage devices
to optimize read availability, data locality, fault tolerance, etc.
The heterogeneity of storage resources adds complexity to
replication engines but also adds benefits such as low storage
cost, better QoS guarantees, and higher performance. Second,
a plethora of data compression algorithms have been invented
to account for the explosion of data volume and variety. Data
compression is a data reduction technique which encodes data
in a way that decreases the data footprint and, thus, the cost
of I/O. Hence, this technique can greatly benefit application
performance by balancing compression/decompression time
with the cost of I/O to the underlying storage system. Data
compression is utilized in replication [17], [18] to increase I/O
bandwidth, reduce storage footprint, reduce network I/O cost,
and enable security. However, data compression increases the
latency of operations performed by the clients. Hence, it is cru-
cial to use compression intelligently to balance this trade-off.

Even though both hierarchical storage and data compression
improve the effectiveness of data replication, we identify
several challenges in the current approaches. First,
different replication schemes are designed for different
application/system requirements. These requirements are
often conflicting and none of the solutions provide a tunable
choice of these requirements in the same system. Second,
most replication engines use heterogeneous hardware as
separate devices with particular performance and capacity
characteristics. However, these storage devices are arranged
in a hierarchical setup. The benefit of such a setup stems
from hiding slower-but-larger mediums behind the latency
of smaller-but-faster mediums. This is achieved by using
parallelization techniques such as pipelining, concurrent
access lanes, and smart scheduling. As the existing solutions978-1-7281-6251-5/20/$31.00 ©2020 IEEE



do not consider these hierarchical characteristics, they do
not efficiently leverage the potential of the storage system.
Finally, data compression is a powerful tool to improve the
effectiveness of data replication by significantly reducing the
I/O and storage cost. Yet, all replication schemes use a single
static compression library. Devarajan et. al. [19] showcased the
variability of compression performance based on input charac-
teristics (e.g., data type, format, and distribution). To mitigate
these problems and maximize the benefits of data replication,
we need an adaptive replication selection engine which can
dynamically choose data compression and hierarchical storage.

In this work, we propose HReplica: a dynamic data replica-
tion engine with adaptive compression for multi-tiered storage
environments. At the core of HReplica is an optimization
engine which chooses the appropriate replica destination (i.e.,
node + storage tier), compression library, and replication
scheme for a given data input, user requirement, and available
system configuration. The optimization traverses the multi-
dimensional solution space to find the optimal combination
of location, compression algorithm, and replication scheme to
achieve the desired user requirement. HReplica uses a dynamic
programming approach and a cost-based model, enhanced with
reinforcement learning, to predict the performance character-
istics of each replication scheme coupled with a compression
library and a targeted storage tier. HReplica is designed as a
modular component which can be placed on top of any storage
solution as its replication engine.

The contributions of HReplica can be summarized as:
1) Demonstrating the benefit of using a storage hierarchy and

compression to dynamically tune data replication (III-A).
2) Designing a dynamic replication engine with adaptive

compression for tiered storage environments (IV).
3) Introducing a novel dynamic selection engine tailored to

application requirements and system specification (IV-C).
4) Quantifying the benefit of such an engine for complex

scientific and cloud applications (V).

II. BACKGROUND AND RELATED WORK

A. Data Replication

For many years, data replication has been studied
thoroughly in the World Wide Web [20], peer-to-peer
networks [21], [22], ad-hoc and sensor networking [23], [24],
and mesh networks [25]. Data replication is a technique that
aims to increase data availability by creating multiple copies
of the same data, called replicas, and distributing them at
multiple locations [26]. This technique trades increased I/O
cost during writing in order to offer fault tolerance and high
data availability for read operations. It is extensively used
in supercomputers and data-centers to decrease the user’s
waiting time and minimize network consumption by utilizing
different replicas of the same service [27]. Many distributed
storage systems such as parallel file systems [28], key-value
stores [29], [30], and distributed log stores [31], [32] use
data replication for two main reasons: to optimize data access
and/or increase data durability. Data replication can optimize
data access by increasing spatial data locality, decreasing I/O

and network interference, and enabling better load balancing in
a distributed environment. Also, data replication can make data
more resilient to hardware and software faults by increasing
the number of replicas and placing them in several locations.
However, replication also incurs costs such as increased
storage footprint, write latency, and network consumption.
Hence, the primary goal of a data replication engine is to
manage the trade-off between the features provided and
the costs incurred. These objectives often conflict with one
another. For instance, load balancing within the cluster can
inhibit the spatial data locality or decreasing storage footprint
by reducing the number of replicas can affect the degree of
fault tolerance. Hence, most modern data replication engines
focus on providing a specific feature for the applications while
minimizing the cost of replication (expressed as constraints).
A summary of all existing data replication engines based on
their features and costs are presented in Table I. As seen in
the table, all state-of-the-art replication schemes provide at
most two features while minimizing replication cost. In a
multi-tenant environment, balancing data access performance
and data durability semantics is a very challenging task
and replication engines have to be re-designed to provide
tunability and flexibility. This is the primary contribution
of HReplica: to create a tunable data replication engine for
different application requirements.

B. Data Replication in Heterogeneous Environments

Data replication in heterogeneous environments pose a great
challenge in the form of storage reliability and performance.
Wenhao et. al. [14] proposed a cost-effective dynamic data
replication strategy, which facilitates an incremental replica-
tion method, to reduce the storage cost and meet the data relia-
bility requirement at the same time in a diverse, heterogeneous
cluster. The replica placement algorithm accounts for the het-
erogeneity by building a cost model of storage resources such
as reliability, performance, and capacity. Navneet et. al. [15]
proposed a cross data-center replication method that uses a
dynamic knapsack algorithm to optimize the trade-off between
the cost of replication and data availability. It re-replicates
the replicas from higher-cost data centers to lower-cost data
centers without affecting data availability. Jaing et. al. proposes
a pattern-directed replication scheme (PRS) [16] to achieve ef-
ficient data replication for heterogeneous storage systems. PRS
selectively replicates data objects and distributes replicas to
various storage devices based on their features. It first groups
objects with similar data access patterns and then replicates
all objects in a group. Jiong et. al. proposes a heterogeneous-
aware data placement algorithm [33] to adaptively balance
the amount of data stored in each node to improve the data
processing performance. These solutions adaptively balance
the performance characteristics and data availability require-
ments of the application and dynamically choose the number
of replicas to improve read performance. All of these works
take into consideration the storage drive capacity and the CPU
heterogeneity of a node, but do not consider the hierarchical
nature of multi-tiered storage [34]. Hierarchical techniques



TABLE I
FEATURES VS CONSTRAINTS IN DATA REPLICATION TECHNIQUES

Constraint
(reducing cost)

Low
write

High
write

Low
storage

Features latency bandwidth cost
Low
read latency RTRM [9] MORM [8] MOE [8],

MORG [35]
High
read bandwidth

GFS [36],
OMR [37] SSOR [38] MOE,

MORG
Low
read interference RTRM D2RS [39],

HQFR [40] CIR [14]

Data resiliency CDRM [41] DCR2S [42]

Fault tolerance MinCopysets [43] RFH [10],
MORM RFH

Load balancing OMR,
SSOR HQFR CIR

such as I/O pipelining and concurrency can positively affect
data replication. These ideas are explored in this paper.
C. Compression in Data Replication

To reduce the cost of replication and maximize its benefits,
some researchers have proposed to use data compression.
Russell et. al. proposed a page replication scheme [17] for
databases with page-level compression. The compression
reduces both the storage footprint as well as the cost of
I/O and networking. Navendu et. al. proposes a data geo-
replication [18] where it uses delta compression and gzip to
reduce the network cost of placing the replicas. This technique
showcases that reduction in I/O can greatly decrease the cost
of replication. Jinwei et. al. proposed a population-aware, cost-
effective and resilient (PMCR) data replication algorithm [44].
PMCR utilizes delta compression to reduce storage and
bandwidth cost. These examples show the promise of utilizing
data compression for replication. However, all the proposed
solutions use data compression in a naive way by applying
the same compression technique across all replicas when it
has been proven that different compression algorithms show
significantly different performance for different inputs [19].
Each compression library optimizes for a compression metric
(e.g., compression/decompression speed, compression ratio).
However, compression objectives are orthogonal. Thus,
choosing a single compression technique for all replica copies
can lead to suboptimal results. Our work explores a more
dynamic and intelligent compression technique applied on
replicas that could lead to higher performance.

III. MOTIVATION AND PROBLEM STATEMENT

A. Motivation

Data replication can benefit from both data compression
and heterogeneous storage. In this work, we are motivated to
build the first data replication engine that combines the power
of intelligent data compression and selective replica placement
in a hierarchical storage environment. To better understand
the impact of different replication engines, we run a synthetic
benchmark and measure metrics such as the replication cost
(i.e., write time) and access performance (i.e., read time). In
this test, each process first writes a single MB of data in a file
per process fashion and repeatedly reads it back 10 times. This
cycle repeats 32 times. We ran this test with 2560 processes

0
20
40
60
80

100
120
140
160
180

B
as

el
in

e

N
o

ne

B
zi

p

Z
lib

br
o

tl
i

lz
4

sn
ap

py

S
m

ar
t

N
aï

ve

P
R

S

H
ie

ra
rc

hi
ca

l

H
R

ep
lic

a

Homogeneous  Env Heterogeneous Env

T
IM

E 
(S

EC
O

N
D

S
)

SCENARIOS

Write (sec) Read (sec)

Fig. 1. Synthetic benchmark with data replication

for a total data size of 800 GB organized in an HDF5 file. We
investigate how different replication schemes can boost read
performance by increasing the data availability. We ran this
test on the Ares cluster [45] at Illinois Tech. We deployed
two 32-node storage environments, one homogeneous
OrangeFS [46] installation running on 32 HDD drives, and
one heterogeneous installation using 16 HDD, 8 SSD, and
8 NVMe drives. We have implemented different replication
engines and the test cases are: a) Baseline without replication
b) Homogeneous replication with/without compression c)
Heterogeneous replication but not hierarchical based on
PRS [16]. d) HReplica, where the replication scheme uses a
combination of smart compression libraries and hierarchical
storage to maximize read performance. Figure 1 shows
the results, with x-axis showing various configurations as
discussed above and y-axis depicting the time elapsed in
seconds for both write (i.e., replication cost) and read.

Results show that without using data replication, the
benchmark takes 92.67 seconds to complete. When the
benchmark runs with homogeneous data replication strategy
enabled, the application’s read cost is reduced by 1.8x over the
baseline with increased write cost of 4.32x. When compression
is enabled, significant application performance variability can
be observed. Specifically, when light compression is applied
(LZ4), a 5x reduction in the read time is achieved by the
smaller data size (i.e., 5x compression ratio) with only 3x
increased write cost. On the other hand, when heavy compres-
sion is applied (Bzip), the benefit of compression is offset
by the prolonged compression time (i.e., 9x compression ratio
but 1.5x slower read time). This performance variability can
be caused by the ability of each compression library to apply
meaningful compression [19]. Furthermore, read performance
is increased by 5x when the heterogeneous replication
scheme is used. This is due to the better hardware used
for storing replicas. If we enable hierarchical optimizations
(e.g., operation pipelining and concurrent access to the
hierarchical device) we can further increase read performance
by 1.35x. Lastly, HReplica combines the benefits of
heterogeneous storage, with its hierarchical architecture, and
smart compression together. For instance, using a combination
of Snappy and Brotli enables HReplica to increase read
performance by 5.7x while penalizing write performance
by only 2.8x. Therefore, as results show, combining data
replication schemes, compression, and hierarchical replica



placement is quite rewarding. This dynamic matching would
both increase the resource utilization of the storage resources
and enable more effective data replication.

B. Problem Formulation

HReplica aims to maximize the benefits of data repli-
cation by building a replication scheme that intelligently
combines data compression and multi-tiered storage. Consider
an application consisting of n data tasks, a collection of C
compression libraries, and a hierarchical environment with L
storage tiers. The optimization problem is shown in Table II.
In this formulation, higher tiers (i.e., tiers with higher band-
width and lower latency) have a smaller index. The objective
function tries to minimize the replication cost by reducing
the synchronous write cost. This is done by compressing
replicas and placing them on higher tiers. This depends on
the replication requirements (e.g., synchronicity, # of replicas,
latency requirements, etc) as well as tier characteristics such
as the tier’s available capacity, access latency, and bandwidth.
In the formulation, parameters rn, rm, wc, wd, and wr (i.e.,
first two are replication metrics and last three are compression
priorities) are tuned based on requirements at different levels
(i.e., system, application, and operation level). Furthermore,
the objective function also considers the possibility of no com-
pression since under certain system configurations, data com-
pression might hurt the overall replication performance [47].

TABLE II
PROBLEM FORMULATION

Given i, a replication task
r, HReplica’s replication scheme
rn, number of replicas
rm, mode of replication synchronous/asynchronous
C, a set of compression algorithms with each element c
tc, compression time for algorithm c
td, decompression time for algorithm c
rc, compression ratio for algorithm c
wc, weight for compression time of algorithm c
wd, weight for decompression time of algorithm c
wr , weight for compression ratio of algorithm c
L, a set of tiers with each element l

Define P , indivisible sub-tasks of task i
Size(p), size of piece p
Concurrency(L), sum of hardware lanes in all tiers
Length(x), length of vector x
Duration(p, c, l), the time taken to execute sub-task p

with compression c on tier l.

Minimize
∑P

p=0 Duration(p, r, c, l)

Subject to 1. Size(p) mod 4096 = 0
(constraints) 2. Length(P) ≤ Concurrency(T )

3. Length(P) ≤ Length(L)
4. rc ≥ 1
5. Size(p) ≤ Size(l)
6. wc + wd + wr = 1

Note, constraints 1-3 ensure a small number of sub-
problems keeping the cost of the dynamic programming
algorithm low. Additionally, constraint 1 makes sub-problems
highly reusable which further reduces the complexity of the
algorithm. Constraint 4 ensures the selected compression will
actually result in data reduction. Constraint 5 guarantees that a

sub-task can fit in a target tier. Finally, constraint 6 normalizes
the weights across different metrics of compression.

IV. HREPLICA: HIERARCHICAL DATA REPLICATION

HReplica is a data replication engine that utilizes smart
data compression and multi-tiered storage to holistically op-
timize the replication process and reduce its cost. HReplica
decomposes a replication task into a replication scheme opti-
mally matching an appropriate compression library and storage
tier by a dynamic and intelligent data replication algorithm.
HReplica contains four key components: a Replication Handler
(RH), a Pattern Analyzer (PA), a Compression Cost Predictor
(CCP), and an Engine. The API transforms each replication re-
quest into a 3-tuple task {data buffer, replication requirements,
constraint}. The RH analyzes the task data to identify data
characteristics and transform the task requirements and con-
straints into replication and compression metrics. The metrics
along with system data (acquired by a Monitoring Interface
(MI)) and data access pattern (from a PA) are passed to the En-
gine. The Engine uses this knowledge to solve the optimization
problem and produce a data replication scheme which includes
the data decomposition, replication parameters, compression
library, and targeted storage tier. Then the scheme is passed
to the Replication Executor (RE), which performs replication
and stores this information into the Replica Catalog (RC).
HReplica is designed with the following principles in mind:
1) Hierarchy-aware: HReplica should build an optimal repli-

cation scheme by applying the appropriate compression
algorithm per tier by leveraging the different tier per-
formance characteristics. This increases the replication
effectiveness and storage utilization.

2) Tunable: HReplica should produce tunable replication
schemes satisfying user-requirements on different levels
(system-, application-, and operation-level). Tunability is a
core requirement of modern dynamic multi-tenant systems.

3) Dynamic: HReplica should be able to dynamically adapt to
the changing replication requirements and constraints with
negligible overheads upon switching policies. Additionally,
it should transparently provide an interface to interact with
different replication and compression schemes in real-time.

A. Design and Architecture

Figure 2 shows the architecture of HReplica. HReplica is
designed as a data replication plugin available to existing
storage systems. System software which performs I/O can be
compiled with the library (libhreplica.so) and use its native
API (e.g., replicate() and locate()). To increase portability,
the HReplica library can also be dynamically linked using
LD PRELOAD. In this case, systems need to build their
interface which can be translated to HReplica APIs external to
the system software and pre-loaded in the system environment.
This way, HReplica can transparently intercept replication
tasks and redirect them to its internal API. The replication
requirement can be passed at different levels to the engine, a)
system level: defined through a configuration, b) application
level: defined by a special application initialization API (e.g.,



HReplica

Compute Nodes
Storage Nodes

Pattern 
Analyzer

Compression 
Cost Predictor

Replica Catalog

Storage Interface

1. Write Request

3.1 Solve(request, constraint)

7. Compression 
cost

6. Storage 
state

4. Application 
Pattern

3.2 Record Operation

5. Replication
schema

10. Record Replica 
information

9. Perform I/O

1. Read Request

2. Locate  
Replica

Storage 
Hierarchy 
State

Monitoring
Interface

ReadWrite

Initial 
Seed

Replication 
Executor

Replication Handler

Engine

8. Replication scheme
(#replicas,compression, tiers) 

2.

Data 
Analyzer

Requirement
Analyzer

Fig. 2. HReplica architecture

during MPI Init), and c) operation level: when replication is
invoked. In the case of LD PRELOAD, the operation level
requirements are ignored. HReplica targets modern extreme-
scale system designs with compute node-local NVMe drives,
shared burst buffers, and a remote PFS. However, the design of
HReplica is generic and works with n-tiers of a storage hier-
archy. The information about the tiers (e.g., bandwidth, device
location, interface, etc.) is externally provided by the deployed
storage. We use a light weight system monitor service (ideally
existing monitoring services in cluster such as Ganglia [48]
could be used) which tracks the available capacity of storage.

The flow of HReplica’s replicate operation is as follows. In
the case of write (green arrows in the figure), the storage solu-
tion uses HReplica’s API with input data, replication require-
ments, and constraints. The associated data, requirement, and
constraint is passed for analysis to the RA (step 2) which iden-
tifies the data attributes (e.g., type, distribution, and format).
Additionally, the RA combines the operation requirements
with those of the application and the system and produces
a list of replication metrics (i.e., rn and rm) and compression
priorities (i.e., wc, wd, and wr), called HReplica Metrics
(HRM). In parallel, the input is passed to the PA to analyze the
application’s access pattern (step 3.2). This prediction is based
on a data-centric scoring of data [49] which determines the
hotness of the data. The application’s data access pattern drives
the decomposition decision for replication. The CCP maintains
a table of expected costs for each combination of the above
data attributes and chosen compression library (as presented
in [19]). Furthermore, the MI obtains the current storage status,
namely tier availability and their respective remaining capac-
ity. The Engine uses the HRM (step 3.1), application pattern
(step 4), current replica distribution (step 5), and storage state
(step 6) to produce an optimal replication scheme. During the
optimization, each combination of solution consults with the
CCP (step 7) to estimate the compression and I/O costs which
are then minimized by the optimizer. A replication scheme
consists of P pieces of replica data, where each piece p is cou-
pled with a target tier, the ideal compression library, and the
replication metrics given by the optimization. The produced
scheme is then passed to the RE (step 8), containing the com-

pression interface, which dynamically chooses the required
compression algorithm. Once the compression is executed, the
replication executor sends the compressed data to the storage
interface to perform I/O (step 9) and updates the RC (step 10).

B. Replication Handler

The analyzer has two internal components, a) Data Analyzer
and b) Requirement Analyzer.

1) The Data Analyzer (DA): is responsible for deducing the
input data characteristics such as type, distribution, and format.
For data-type and format inference, HReplica uses state-of-
the-art techniques such as sub-sampling, binary decoding,
and introspection [19]. The DA also examines the content
distribution (as certain distributions are more compress-
ible [50]) and classifies each input buffer as Normal, Gamma,
Exponential or Uniform. Distribution detection is performed
statically using techniques such as sub-sampling and random
partitioning [51]. Lastly, several data attributes can be easily
obtained using metadata parsing of self-described portable data
representations (e.g., HDF5, NetCDF, Avro, RDD, Parquet,
etc.) used in most scientific and cloud applications. Hence, in
most practical cases, the DA is fast and reasonably accurate.

2) The Requirement Analyzer (RA): enables the dynamic
translation of various user-requirements into replication and
compression properties. Additionally, it detects requirement
conflicts and resolves them by requirement priority. The
default priority of requirements is operation-level over
application-level over system-level. In case of conflicts on
the same level (e.g., user sets an operation to be synchronous
and have low write latency) the module applies the first
one only. The supported parameters, which can be tuned
at each level, are boolean or integral variables and include:
minimize write latency, minimize read latency, maximize
read availability, maximize write availability, maximize
durability, minimize storage cost, maximize load balancing,
and minimize energy cost. These constraints and requirements
are often conflicting such as minimize write latency and
maximize durability, minimize storage cost and maximize
read availability, and minimize storage cost and maximize
load balancing. However, some constraints and requirements
are complementary, such as maximize write availability and
maximize load balancing, minimize energy consumption and
minimize storage cost, and maximize durability and maximize
read availability. These constraints and requirements directly
translate to the HRM that match those constraints and
requirements. These mappings are derived heuristically and
through literature experience. The replication count, based
on heuristics from various systems, is a range with MIN=1,
MAX=5 and DEFAULT=3. This is configurable by the user
at each level. The default values configured in the library are
rn = 3, rm = async, wc = wd = wr = 0.33. A summary of
these translation is provided in Table III. The dash (i.e. “-”)
symbol in the table is either derived from other features or
just defaulted by the system at the end of resolutions.



Requirement Type rn rm wc wd wr

Min read latency B Max - 0 1 0
Max read bandwidth B - - 0 0.5 0.5
Max Durability I Max SYNC - - -
Max Load Balance B - - 0.3 0.3 0.3
Min Low Energy B Min - 0 0 1
Constraint
Min write latency B - ASYNC 1 0 0
Max write bandwidth B - ASYNC 0.5 0 0.5
Min storage B Min - 0 0 1

TABLE III
MAPPING USER REQUIREMENTS TO HREPLICA METRICS

C. Replication Engine

The Engine, HReplica’s central brain, is responsible for
devising a replication scheme utilizing the compression
algorithms and multi-tiered placement for an incoming
replication task. The engine receives the input data
characteristics along with the replication metrics from
the RA, expected compression cost from the CCP, and the
current storage status from the MI. It runs a recursive multi-
dimensional optimizer to produce one or more sub-tasks for
each replication task. The set of created sub-tasks constitute
a scheme that is passed to the RE for execution.

1) Algorithm: When a task is received, the Engine
recursively matches and places replicas for all combinations
of target tier, compression library, and replication strategies.
During the calculation of the cost of each sub-problem,
the engine pulls the current status of the tier and estimated
compression cost from the MI and CCP respectively. The
input is first split based on hotness of data. Each spectrum
of hot data is split into pieces. Each split piece forms a
sub-problem which is then placed into the hierarchy. For every
combination of the sub-problem, if the compressed data can
fit in an upper layer, then it will be added to the optimization
space as a sub-problem. Otherwise, the task will be split in
two parts in multiples of 4096 bytes: one that can fit in the
remaining capacity of the current tier and one holding the
rest of the I/O task. This satisfies constraints 1 − 3 of the
problem statement described earlier. Our choice of 4096 bytes
is motivated from the page-size of RAM and the block size
of storage devices. This will avoid unaligned I/O, a known
issue in storage [52]. More importantly, however, this choice
makes the memoization highly effective as the sub-problems
would be reusable. The cost of replication is only calculated
for synchronous writes. Hence, if asynchronous replication is
enabled, then the cost of writing replicas won’t be added to the
cost function. The solution can be expressed as a recursive
dynamic programming optimization. The mathematical
formulation of the cost function Duration(p, r, c, l) is
given in equations 1 and 2, consistent with the problem
formulation in Section III-B. Additionally, we describe the
recursive algorithm of matching in Algorithm 1. The dynamic
programming optimization is almost constant with time
complexity of O(2 ∗ (len(L))2), where len(L) is very small
(in the order of tens). Hence, the time complexity of the
replica placement algorithm is practically O(1).

Duration(p, l, c) =

{
T ime(i0, l, c) rm = ASY NC∑rn
j=0 T ime(ij , l, c) otherwise (1)

T ime(i, l, c) = wc ∗ tc + t(i, l)− wr ∗
t(i, l) ∗ (rc − 1)

rc
+ wd ∗ td (2)

Duration represents the cost of executing a replication
scheme for task i to a tier l with a compression library c. l is
the index of a tier in the set of all tiers L, where lower values
of l represent higher tiers (e.g., l = 0 represents DRAM).
c represents the index of the compression library in the set
of all compression libraries C, with c = 0 representing no
compression. When c = 0 then tc and td equals 0 and rc
equals 1. Also, wc, wd, and wr represent weights for tc, td
and rc respectively. rm represents the mode of replication and
it carries value of ASYNC/SYNC. The number of replicas is
represented by rn. Finally, ij represents jth replica of task i.

Algorithm 1: Replication Algorithm
1 Procedure Calc(p, c, l)
2 if l.size ≥ c(p).size then
44 Place(p, c, l)
5 else
77 parts← Split(p, c, l.size)
99 Place(parts[0], c, l) + Calc(parts[1], c, l.next)

10 end
11 Procedure Place(p, c, l)
12 Min(Duration(p, l, c), Calc(p, l+1, c), Calc(p, l, c+1))

2) Engine Illustration: A visual representation of the
Engine is represented in Figure 3. In the default case where
the Engine does not satisfy any replication requirement or
constraint, we see three data blocks B1 through B3 are placed
in the heterogeneous hardware based on the hotness of the
data. Now if the replication requirement was to maximize fault
tolerance with the same storage cost, HReplica would apply
heavy compression on each data block and, hence, would be
able to create more replicas in the same storage space. In
the given example, applying heavy compression increases the
replica count by 2.5x with an increased write cost (due to
more replicas being written) of 1.6x. On the other hand, if the
requirement was to reduce read access latency while reducing
storage cost, HReplica would have different replicas with
different compression libraries with at least one replica having
no compression. This would ensure the data access latency
would be optimized using the uncompressed data whereas
storage cost would be reduced by compressing other replicas.
This process would have the best latency that can be achieved
for the three blocks while also reducing the storage cost by
10%. This example showcases how the replica engine can be
dynamically tuned based on different application requirements
and constraints in a multi-tiered storage environment.
D. Replica Catalog (RC)

The main role of the RC is to maintain the replica set
information for a given data piece. Specifically, the Engine
could split data into multiple pieces and each piece could
have different replication factor (i.e., number of replicas). For



Node 1

B1 B2 B3
Data Blocks

HReplica
Use Case 2

Req: Read latency
Constraint: Storage cost

Current System
(Default)

Node 1

B1

B1 B2

B3 B2 B3

NVMe

SSD

HDD

HReplica
Use Case 1

Req: Fault Tolerance

Node 2

B1

B2 B1

B3 B2 B3

NVMe

SSD

HDD

B1 B2

B1 B2 B3 B3

B3 B2 B1 B3 B2 B1

Node 2

B3 B2 B1 B3 B2 B1

B2 B3

B1 B2 B1 B3

Node 1

Node 2

B1

B2

B3 B2

B3

B2 B1 B1

B3Replication Metrics

● # Replica
● Write Cost

● Storage Footprint
● Read Latency for 3 blocks

● 3
● 3 * 3 blocks = 9

 
● 9 blocks
● NVMe + SSD + HDD

● 8
● 8*(3*1/2) + 3*1/3  

= 13
● 9 blocks
● 3*NVMe + 3*1/3 

Compression CT DT CR
Heavy 1/3 1/3 2

Medium 1/4 1/4 1.7
Light 1/5 1/5 1.4

● 3
● 3 + 4*(1/4 +1/1.7) + 

2*(1/5 + 1/1.4) = 8.18
● 7.4 blocks
● 2*NVMe + SSD

Hot

Warm

Cold

Fig. 3. HReplica Engine Illustration

each data piece, the RC maintains a map of a data piece and
the locations of its associated replicas in a distributed Hash
Map [53]. Upon store, it puts the data piece as the key and the
vector of replicas as the value in the Hash Map. Upon a read
request, the Replica Catalog pings the Hash Map and gets the
associated locations and calculates the distance of each replica
to determine the closest one. As the read request might not
be aligned, the read could correspond to multiple data pieces
and, hence, multiple locations. The Hash Map is crucial for
this use case as it provides a uniform and fast O(1) insertion
and querying capability, support for concurrent access, fault
tolerance in case of power-downs, and low latency.

E. Replication Executor

The Replication Executor (RE) is responsible to execute
the replication scheme output from the engine. For a given
scheme, the executor first applies the compression algorithm as
instructed by the scheme and then places the replicas into the
storage. This is fulfilled based on the replication mode, number
of replicas selected, and their placement tiers by the Storage
Interface. Once the replication is completed, the RC is updated
with the location of the replicas. The Compression Manager
(CM) provides a unified interface to access all the compression
libraries. We utilized a unified compression library framework
and integrated it into this interface. The Storage Interface (SI)
unifies all I/O calls to all tiers using a simplified interface
with APIs read() and write() using a factory pattern.

F. Implementation

HReplica library’s prototype implementation is written in
C++ in around 1K lines of code. Additionally, HReplica
contains wrappers for C/C++ and Java applications supporting
a wide range of applications ranging from scientific computing
to Cloud-based software such as Redis, memcached, and
Hadoop. The HReplica library can be simply linked to an ap-
plication (e.g., using LDFLAGS or LDPRELOAD) to replicate
data using its wrapper or can be included as a dynamic link to
use its simple APIs. The HReplica library only provides the
Engine, DA, RA, and the CCP modules. The rest of the in-
terfaces are implemented as external components to HReplica
and should be appropriately implemented based on the storage
solution it is used with. For our prototype implementation, we

Engine

Library selection

Compression

Replica Catalog Update

Write

: 2.18%

: 0.05%

: 47%

: 3.84%

: 47%

(a) Write Operation

Replica Catalog Locate

Library Metadata

Library selection

Read

Decompression

: 4.60%

: 1.11%

: 0.06%

: 46.8%

: 47.4%

(b) Read Operation

Fig. 4. HReplica anatomy of operations.

use Hermes [34] as a hierarchical storage solution. Hermes
uses the HReplica library to perform replication where the
storage clients and monitors are provided by Hermes.

V. EVALUATION

A. Methodology and Experimental Setup

1) Configurations: We ran all of our experiments on the
Ares cluster at the Illinois Institute of Technology [45]. The
entire cluster runs on a 40 GBit Ethernet with RoCE capabil-
ities. We configure the buffers, unless specified otherwise, to
fit 30% in local NVMe and 70% in burst buffers. This ratio is
motivated from the existing hierarchical supercomputer [11]
configurations. Cluster specifications are shown in Table IV
and Table V shows the configurations tested.

TABLE IV
TESTBED SPECIFICATIONS.

Node Type CPU RAM Disk
Compute x64 Intel Xeon Silver 4114 @ 2.20GHz DDR4 96GB 512GB NVMe SSD
Burst Buffers x4 AMD Dual Opteron 2384 @ 2.7Ghz DDR3 64GB 2x512GB SSD
Storage x24 AMD Dual Opteron 2384 @ 2.7Ghz DDR3 32GB 2TB HDD

TABLE V
TEST CONFIGURATIONS.

Replication Test case Abbreviation Heterogeneous Compression
Baseline BASE No None
Multi-tiered Replication without compression MTNC Yes No
Multi-tiered Replication with single compression MTSC Yes Single
HReplica HR Yes Dynamic

2) Workloads: To evaluate HReplica, we first use micro-
benchmark workloads to measure the performance of internal
components. These micro-benchmarks perform mixed write
and read operations and measure the time taken by the
component we are studying. We then calculate other metrics
such as throughput based on this time. Additionally, we use
real I/O workloads from HPC and Cloud to compare HReplica
against current state-of-the-art replication solutions imple-
mented within OrangeFS [46] and Redis [29] respectively. We
use VPIC [54] and BD-CATs [55] I/O kernels as HPC work-
loads to evaluate the data replication engine within OrangeFS
and use Yahoo Cloud Services Benchmark (YCSB1) to evalu-
ate the data replication engine within Redis Key-Value Store.

3) Performance metrics: We measure the overall time re-
quired to perform the replication task in seconds, the number
of replicas the engine produced, and the read performance
in seconds. We define throughput as the rate of requests
processed per second. We executed all tests five times and
report the average along with standard deviation.

1https://github.com/brianfrankcooper/YCSB



0

0.2B

0.4B

0.6B

0.8B

1.0B

1.2B

1.4B

T
H

R
O

U
G

H
P

U
T

 (
O

P
S

/S
EC

O
N

D
)

REQUEST SIZE

(a) Engine

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

4 8 16 32

T
H

R
O

U
G

H
P

U
T

 (
O

P
S

/S
EC

)

# OF CLIENT NODES

Store Locate

(b) Replica Catalog

Fig. 5. HReplica internal components.

B. HReplica Internal Component Evaluation

1) Overhead Analysis: Each replication task within
HReplica is converted by the engine into a replication scheme
which contains its replica count, replication destination,
and the compression library to be applied. In this test, we
want to analyze the relative breakdown of write and read
operations with various parts of the HReplica framework to
show whether or not the overhead of the engine is greater
than its benefits to the storage system. To quantify the
overhead, we perform 1K writes and reads of 1MB each and
present the overall breakdown into its components as shown
in Figure 4 (write 4(a) and read 4(b)). We observe that for
both operations 94% of the time is spent on I/O operation
or compression/decompression operations. The engine takes
about 2% of the overall time whereas the replica catalog takes
approximately 4% to record and 4.6% to locate nearest repli-
cas. The rest of the components contribute to about 1% of the
overall time. This result shows that the HReplica framework,
in practice, has less than 7% overhead for both read and write
operations. With this overhead, a storage system can utilize
the intelligence present within the engine to dynamically
achieve different replication requirements effectively.

2) Replication Engine Performance Analysis: The perfor-
mance of the algorithm that the engine runs is critical for build-
ing the replication scheme within HReplica. Hence, the algo-
rithm should demonstrate high throughput of mapping various
replication tasks to their corresponding tiers and compression
libraries. To evaluate this, we perform 8K data replication tasks
of various sizes and calculate the throughput of the engine.
The throughput of the algorithm is shown in Figure 5(a). In
this figure, the x-axis represents various task sizes and the
y-axis shows the overall throughput (tasks/second). We can
observe that until 4MB task size, the throughput of replication
engine algorithm is almost constant at about 1.29 billion tasks
per second. As the data size increases, the throughput slightly
drops (2-5%). This is due to the fact that for bigger tasks, the
algorithm has to split the task into several pieces (so that it
can fit it into limited capacity tiers) which span across multiple
tiers. Overall, this evaluation highlights that the engine’s algo-
rithm is very light-weight and has high, constant throughput.

3) Replica Catalog Performance Analysis: The throughput
of the Replica Catalog is crucial within a replication
framework. The Catalog is responsible for two main
operations. First, to store replica information and then find
the closest replica to read the data for the client request.

0

200

400

600

800

1000

1200

1400

1600

1800

None Bzip Zlib brotli lz4 snappy

Default Replication HR

R
E

A
D

 T
IM

E
 (

S
E

C
O

N
D

D
S

)

SCENARIO

(a) BDCATS with read optimization

0

1

2

3

4

5

6

7

8

9

10

0K

5K

10K

15K

20K

25K

30K

35K

40K

None Bzip Zlib brotli lz4 snappy

Default Replication HR

#
 O

F
 R

E
P

L
IC

A

W
R

IT
E

 T
IM

E
 (

S
E

C
O

N
D

S
)

SCENARIO

(b) VPIC with fault tolerance

Fig. 6. HReplica Optimization

Both these operations should demonstrate high throughput.
Hence, to measure the capabilities of the catalog, we perform
data replication information store and locate operations. Each
operation is performed 64K times per client process and we
calculate the throughput. Figure 5(b) shows the results. In this
figure, the x-axis represents different scales of requests from a
client node (each node has 40 client processes) and the y-axis
shows the overall throughput achieved in operations per
second. We observe that the store operation has a throughput
of 305K operations per second which is achieved with 16
client nodes. Additionally, the locate operation reaches a
throughput of 410K operations per second with all 32 client
nodes. Both operations scale when increasing the clients.
Overall, this evaluation demonstrates that the data structure
and algorithm used within the Replica Catalog is light-weight
and offers high performance.
C. HReplica with Scientific Applications

1) BD-CATS: Scientific applications often involve analyz-
ing huge amounts of data. This process involves parallel
reading of data in a repeated pattern. To evaluate the benefit
of HReplica for read access optimization, we use BD-CATS-
IO to read data produced by a simulation application over
eight variables with a data size of 1.2TB. In this test, BD-
CATS reads this data over 16 iterations and 2560 processes.
We compare HReplica with no replication (shown as baseline),
PRS replication without compression (shown as Replication
and None), and PRS with several compression libraries. Note,
we show the most interesting ones here. The data was written
with analysis in mind, hence the replication prioritized fast
decompression time and high compression ratio.

Figure 6(a) shows the results of this test. As it can be
seen, the read time for BD-CATS-IO without replication
is 1334 seconds. When we introduce data replication (PRS
algorithm) without compression, the read time gets reduced
by 1.78x. Applying compression for replication could reduce
the baseline read time by 3.1x (as in case of Snappy and LZ4).
However, we see Bzip hurts the overall read time as it has high
decompression time (i.e., 2.14x slower than no compression).
Hence, it is crucial to apply compression intelligently to
optimize read time while considering the decompression time.
This is achieved dynamically by HReplica as it considers both
compression ratio (which optimizes read I/O) and decompres-
sion time. Ultimately, HReplica achieves 3.1x performance.



1
2
2

5
2
9 7
5
5

2
,9

4
3

3
7
9

2
8
4

2
7
9

3
2
9

1
0

7

6
0 1
2
9

2
4

1
9

2
1

1
9

1
9

0

500

1000

1500

2000

2500

3000

3500

None Bzip Zlib brotli lz4 snappy

Default Replication HR

T
IM

E
 (

S
E

C
)

SCENARIO

Put (sec) Get (sec)

Fig. 7. Redis with read optimization

2) VPIC: Scientific applications produce huge amounts
of critical data in the form of simulations, observations,
modeling, etc. These applications require fault-tolerant
semantics to safeguard the data from unforeseen
failures/corruption in the system. To represent this class
of application workload, we use VPIC: a large-scale general
purpose particle-in-cell simulation where each MPI process
produces 8 variables for 8 million particles totalling to a size of
32MB per iteration. This process is repeated over 16 iterations
with 2560 MPI processes. The total dataset generated in the
form of HDF5 files is 1.2TB in size. We compare HReplica
with no replication (shown as baseline), PRS replication
without compression (shown as Replication and None), and
PRS with several compression libraries. The data is written
with high fault tolerance. Hence, HReplica is configured to
increase fault tolerance while minimizing write cost.

Figure 6(b) shows the results of this test. We observe the
baseline time without replication is 1487 seconds to write
the simulation data into the parallel file system. If we apply
data replication, we achieve a replication factor of 3 with
an increased write cost of 6232 seconds (approx. 4.2x). If
we apply compression with PRS algorithm, for the same
replication factor, we can achieve 2x faster write performance
than PRS using Snappy compression. However, for Zlib, the
write time increases by 5.5x due to high compression time.
HReplica for the same storage cost with no compression can
achieve a replication factor of 9 (i.e., 3x more replicas) while
having similar write cost with PRS. This test case shows
the prioritization of the HReplica engine can be dynamically
changed to suit the replication requirement in hand.
D. HReplica with Key Value Store

1) Redis: Cloud applications use Key-Value Stores (KVS)
for storing data with a flat namespace. A popular example
of this use case is Internet of Things (IoT) devices that
produce sensor information (e.g., temperature of each room
in a building) and store that information in a key-value store.
KVS are often distributed across geographically separated
locations, as these sensors are present all over the world. To
increase availability of reading temperature data from across
the world, KVS utilize data replication. We use Redis as a
suitable representative for these KVS and plugin HReplica
as a dynamic replication engine to provide a tunable repli-
cation requirement within Redis. To evaluate this case, we
use YCSB to run a benchmark on a 64 node Redis cluster
with heterogeneous hardware of NVMe, SSD, and HDD. We

run the read after write workload where each process of
the YCSB benchmark makes 8K requests of size 64KB. We
use a total of 32 client nodes. We compare HReplica with
no replication (shown as baseline), Redis replication without
compression (shown as Replication and None), and Redis with
several compression libraries. We prioritize read optimization
for HReplica.

Figure 7 shows the results of this test. Without replication
YCSB takes 122 seconds to write objects into Redis with
a read cost of 107 seconds. With Redis’ default replication
(3 replicas) the write cost increases by 3.8x while reducing
read cost by 1.68x. With data compression enabled, this read
performance is further improved by 4.8x. However, some
compression libraries do not benefit read performance due to
high decompression time (e.g., Bzip which slows read perfor-
mance by 20%). This is automatically balanced by HReplica
which uses the appropriate compression libraries (i.e., snappy
in this case) to improve the overall read performance by 5.3x.

VI. CONCLUSIONS AND FUTURE WORK

Modern applications are highly data-intensive and I/O is
often the bottleneck in their performance. Storage systems
utilize data replication as a mechanism to improve read
performance through data availability or to increase the fault
tolerance of the system. Different replication schemes en-
able different replication requirements and constraints. As the
systems are becoming multi-tenant, we require a dynamic
replication scheme which can support multiple conflicting
replication requirements while utilizing smart data compres-
sion to achieve its goals. In this work, we present HReplica, a
dynamic data replication engine with adaptive compression
for multi-tiered storage environments. HReplica optimally
utilizes heterogeneous storage and smart data compression
to enable tunable replication requirements while satisfying
various replication constraints dynamically. We introduced a
low-cost replication engine which can optimally solve this
multi-dimensional problem efficiently. Specifically, HReplica
can optimize read performance for data analytic applications
such as BD-CATS by 5.2x. The same engine when tuned for
fault-tolerance can increase replication factor by 3x for VPIC.
We also demonstrated its benefits in a cloud environment by
improving the replication engine of Redis by 5.2x for read
performance.

We plan to incorporate this technology into the Hermes
ecosystem and offer it as a readily available data replication
engine to users. HReplica will be open sourced after further
rigorous testing and we plan to extend its support to more
storage backends.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant no. OCI-1835764 and CSR-
1814872.



REFERENCES

[1] J. Borrill, “Madcap-the microwave anisotropy dataset computational
analysis package,” arXiv preprint astro-ph/9911389, 1999.

[2] R. Latham, C. Daley, W.-k. Liao, K. Gao, R. Ross, A. Dubey, and
A. Choudhary, “A case study for scientific i/o: improving the flash
astrophysics code,” Computational Science & Discovery, vol. 5, no. 1,
p. 015001, 2012.

[3] C. Nieter, J. Cary, D. Smithe, P. Stoltz, and G. Werner, “Simulations
of electron effects in superconducting cavities with the vorpal code,” in
10th European Particle Accelerator Conference. Citeseer, 2006, pp.
2269–2271.

[4] S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelshauser, A. Arend,
M. Bach, B. Becker, S. Bottger, T. Breitner et al., “Alice hlt high speed
tracking on gpu,” IEEE Transactions on Nuclear Science, vol. 58, no. 4,
pp. 1845–1851, 2011.

[5] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud computing and applications, vol. 2008, pp. 825–
830, 2008.

[6] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, “Simulation
of dynamic data replication strategies in data grids,” in Proceedings
International Parallel and Distributed Processing Symposium. IEEE,
2003, pp. 10–pp.

[7] J. Carter, J. Borrill, and L. Oliker, “Performance characteristics of
a cosmology package on leading hpc architectures,” in International
Conference on High-Performance Computing. Springer, 2004, pp. 176–
188.

[8] S.-Q. Long, Y.-L. Zhao, and W. Chen, “Morm: A multi-objective
optimized replication management strategy for cloud storage cluster,”
Journal of Systems Architecture, vol. 60, no. 2, pp. 234–244, 2014.

[9] X. Bai, H. Jin, X. Liao, X. Shi, and Z. Shao, “Rtrm: A response
time-based replica management strategy for cloud storage system,” in
International Conference on Grid and Pervasive Computing. Springer,
2013, pp. 124–133.

[10] Y. Qu and N. Xiong, “Rfh: A resilient, fault-tolerant and high-efficient
replication algorithm for distributed cloud storage,” in 2012 41st Inter-
national Conference on Parallel Processing. IEEE, 2012, pp. 520–529.

[11] CRAY, “Cray datawarp applications i/o accelerator,” 8 2016. [Online].
Available: https://www.cray.com/products/storage/datawarp

[12] O. R. N. Laboratory, “Oak ridge national laboratory’s 200 petaflop
supercomputer,” 1 2020. [Online]. Available: https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/

[13] K. Oh, A. Raghavan, A. Chandra, and J. Weissman, “Redefining
data locality for cross-data center storage,” in Proceedings of the 2nd
International Workshop on Software-Defined Ecosystems, 2015, pp. 15–
22.

[14] W. Li, Y. Yang, and D. Yuan, “A novel cost-effective dynamic data
replication strategy for reliability in cloud data centres,” in 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE, 2011, pp. 496–502.

[15] N. K. Gill and S. Singh, “A dynamic, cost-aware, optimized data repli-
cation strategy for heterogeneous cloud data centers,” Future Generation
Computer Systems, vol. 65, pp. 10–32, 2016.

[16] J. Zhou, Y. Chen, W. Xie, D. Dai, S. He, and W. Wang, “Prs: A pattern-
directed replication scheme for heterogeneous object-based storage,”
IEEE Transactions on Computers, 2019.

[17] R. Sears, M. Callaghan, and E. Brewer, “Rose: Compressed, log-
structured replication,” Proceedings of the VLDB Endowment, vol. 1,
no. 1, pp. 526–537, 2008.

[18] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered approach for elimi-
nating redundancy in replica synchronization,” in Proceedings of the 4th
conference on USENIX Conference on File and Storage Technologies-
Volume 4. USENIX Association, 2005, pp. 21–21.

[19] H. Devarajan, A. Kougkas, and X.-H. Sun, “An Intelligent, Adaptive,
and Flexible Data Compression Framework,” in Proceedings of the
IEEE/ACM International Symposium in Cluster, Cloud, and Grid Com-
puting (CCGrid’19). Larnaca, Cyprus: IEEE, 2019.

[20] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
web server replicas,” in Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No. 01CH37213),
vol. 3. IEEE, 2001, pp. 1587–1596.

[21] A. Aazami, S. Ghandeharizadeh, and T. Helmi, “Near optimal number of
replicas for continuous media in ad-hoc networks of wireless devices.”
in Multimedia Information Systems, 2004, pp. 40–49.

[22] N. J. Navimipour and F. S. Milani, “Task scheduling in the cloud
computing based on the cuckoo search algorithm,” International Journal
of Modeling and Optimization, vol. 5, no. 1, p. 44, 2015.

[23] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in Proceedings of the 6th annual international conference on Mobile
computing and networking. ACM, 2000, pp. 56–67.

[24] B. Tang, H. Gupta, and S. R. Das, “Benefit-based data caching in ad
hoc networks,” IEEE transactions on Mobile Computing, vol. 7, no. 3,
pp. 289–304, 2008.

[25] S. Jin and L. Wang, “Content and service replication strategies in multi-
hop wireless mesh networks,” in Proceedings of the 8th ACM interna-
tional symposium on Modeling, analysis and simulation of wireless and
mobile systems. ACM, 2005, pp. 79–86.

[26] S. Goel and R. Buyya, “Data replication strategies in wide-area dis-
tributed systems,” in Enterprise service computing: from concept to
deployment. IGI Global, 2007, pp. 211–241.

[27] N. Ahmad, A. A. C. Fauzi, R. M. Sidek, N. M. Zin, and A. H. Beg,
“Lowest data replication storage of binary vote assignment data grid,” in
International Conference on Networked Digital Technologies. Springer,
2010, pp. 466–473.

[28] T. . Fraunhofer, “Beegfs, the parallel cluster file system,” 1 2020.
[Online]. Available: https://www.beegfs.io/content/

[29] R. Labs, “Redis key value store,” 1 2020. [Online]. Available:
https://redis.io/

[30] M. Inc., “Mongodb the database for modern applications,” 7 2020.
[Online]. Available: https://www.mongodb.com/

[31] A. Kafka, “Apache kafka, a distributed streaming platform,” 7 2020.
[Online]. Available: https://kafka.apache.org/

[32] A. BookKeeper, “Apache bookkeeper, a scalable, fault-tolerant, and
low-latency storage service optimized for real-time workloads,” 7 2020.
[Online]. Available: https://bookkeeper.apache.org/

[33] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, “Improving mapreduce performance through data placement in
heterogeneous hadoop clusters,” in 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW). IEEE, 2010, pp. 1–9.

[34] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-
aware multi-tiered distributed i/o buffering system,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2018, pp. 219–230.

[35] O. A.-H. Hassan, L. Ramaswamy, J. Miller, K. Rasheed, and E. R. Can-
field, “Replication in overlay networks: A multi-objective optimization
approach,” in International Conference on Collaborative Computing:
Networking, Applications and Worksharing. Springer, 2008, pp. 512–
528.

[36] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
2003.

[37] Z. Zeng and B. Veeravalli, “Optimal metadata replications and request
balancing strategy on cloud data centers,” Journal of Parallel and
Distributed Computing, vol. 74, no. 10, pp. 2934–2940, 2014.

[38] T. Chen, R. Bahsoon, and A.-R. H. Tawil, “Scalable service-oriented
replication with flexible consistency guarantee in the cloud,” Information
Sciences, vol. 264, pp. 349–370, 2014.

[39] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W. Wang, “Modeling
a dynamic data replication strategy to increase system availability
in cloud computing environments,” Journal of computer science and
technology, vol. 27, no. 2, pp. 256–272, 2012.

[40] J.-W. Lin, C.-H. Chen, and J. M. Chang, “Qos-aware data replication
for data-intensive applications in cloud computing systems,” IEEE
Transactions on Cloud Computing, vol. 1, no. 1, pp. 101–115, 2013.

[41] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-
effective dynamic replication management scheme for cloud storage
cluster,” in 2010 IEEE international conference on cluster computing.
IEEE, 2010, pp. 188–196.

[42] N. K. Gill and S. Singh, “Dynamic cost-aware re-replication and
rebalancing strategy in cloud system,” in Proceedings of the 3rd In-
ternational Conference on Frontiers of Intelligent Computing: Theory
and Applications (FICTA) 2014. Springer, 2015, pp. 39–47.

[43] A. Cidon, R. Stutsman, S. Rumble, S. Katti, J. Ousterhout, and
M. Rosenblum, “Mincopysets: Derandomizing replication in cloud stor-
age,” in Proc. 10th USENIX Symp. NSDI, 2013, pp. 1–5.

[44] J. Liu and H. Shen, “A popularity-aware cost-effective replication
scheme for high data durability in cloud storage,” in 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 2016, pp.
384–389.

[45] Scalable Computing Lab, Illinois Tech, “Ares Supercomputer @ IIT,”
2019. [Online]. Available: http://www.cs.iit.edu/∼scs/resources.html

[46] OrangeFS, “OrangeFs,” 2019. [Online]. Available: http://orangefs.com/
[47] M. A. Roth and S. J. Van Horn, “Database compression,” ACM Sigmod

Record, vol. 22, no. 3, pp. 31–39, 1993.
[48] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed

monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[49] H. Devarajan, A. Kougkas, and X.-H. Sun, “Hfetch: Hierarchical data
prefetching for scientific workflows in multi-tiered storage environ-
ments,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2020, pp. 62–72.

[50] R. Gribonval, V. Cevher, and M. E. Davies, “Compressible distributions
for high-dimensional statistics,” IEEE Transactions on Information The-
ory, vol. 58, no. 8, pp. 5016–5034, 2012.

[51] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun, “Hcompress:
Hierarchical data compression for multi-tiered storage environments,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2020.

[52] X. Zhang, K. Liu, K. Davis, and S. Jiang, “ibridge: Improving unaligned
parallel file access with solid-state drives,” in 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing. IEEE, 2013,
pp. 381–392.

[53] H. Devarajan and C. Hogan, “HCL: Hermes Container Library,” 2019.
[Online]. Available: https://bitbucket.org/scs-io/hcl

[54] S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter et al.,
“Parallel I/O, analysis, and visualization of a trillion particle simulation,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–12.

[55] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
V. Roytershteyn, M. J. Anderson, Y. Yao, P. Dubey et al., “BD-CATS:
big data clustering at trillion particle scale,” in SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

https://www.cray.com/products/storage/datawarp
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.beegfs.io/content/
https://redis.io/
https://www.mongodb.com/
https://kafka.apache.org/
https://bookkeeper.apache.org/
http://www.cs.iit.edu/~scs/resources.html
http://orangefs.com/
https://bitbucket.org/scs-io/hcl

