
A Heterogeneity-Aware Region-Level Data Layout
for Hybrid Parallel File Systems

Shuibing He123, Xian-He Sun2, Yang Wang4, Antonis Kougkas2, Adnan Haider2
1School of Computer, Wuhan University, Wuhan, Hubei 430072, China

2Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
3State Key Laboratory of High Performance Computing

3National University of Defense Technology, Changsha, Hunan 410073, China
4Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China

heshuibing@whu.edu.cn, {sun, ywang358}@iit.edu, {akougkas, ahaider3}@hawk.iit.edu

Abstract—Parallel file systems (PFS) are commonly used in
high-end computing systems. With the emergence of solid state
drives (SSD), hybrid PFSs, which consist of both HDD and SSD
servers, provide a practical I/O system solution for data-intensive
applications. However, most existing PFS layout schemes are
inefficient for hybrid PFSs due to their lack of awareness of the
performance differences between heterogeneous servers and the
workload changes between different parts of a file. This lack of
recognition can result in severe I/O performance degradation. In
this study, we propose a heterogeneity-aware region-level (HARL)
data layout scheme to improve the data distribution of a hybrid
PFS. HARL first divides a file into fine-grained, varying sized
regions according to the changes of an application’s I/O work-
load, then chooses appropriate file stripe sizes on heterogeneous
servers based on the server performance for each file region.
Experimental results of representative benchmarks show that
HARL can greatly improve the I/O system performance.
Index Terms—Parallel I/O System; Parallel File system; Solid

State Drive; Data Layout

I. INTRODUCTION

Many large-scale applications have been more and more

data intensive over the past decades, and I/O performance has

become the bottleneck of computer systems. To tackle this

problem, parallel file systems (PFS), such as OrangeFS [1],

Lustre [2], GPFS [3] and PanFS [4], were introduced in high-

performance computer systems. By serving a client request

concurrently from multiple file servers, the aggregate I/O

bandwidth is largely improved. However in order to fully

utilize file servers, one must account for both the application

and underlying server characteristics.

New emerging storage technologies, such as flash-based

solid state drives (SSD), provide a possible alternative for

I/O system design. Unlike HDDs, SSDs are composed of

semiconductor chips and provide higher performance than

HDDs [5]. While SSD is ideal for performance, completely

replacing HDDs with SSDs in a large cluster is not a

widely adopted solution due to the concern of the monetary

cost. Thus, a hybrid PFS, which contains both HDD servers

(HServer) and SSD servers (SServer), is more practical for

HPC systems under a limited cost budget [6], [7].

While hybrid PFSs are promising, their efficiency relies on

an efficient file data layout, which is an algorithm defining how

a file’s data is distributed on available nodes. Most existing

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8

N
or

m
al

ize
d

I/
O

 ti
m

e
File server number

(a) I/O time of each server under a fixed I/O pattern and
stripe size

0

100

200

300

400

500

128 256 512 1024 2048

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

Request Size (KB)

16K 32K 64K 256K 512K 1M 2M

(b) Throughput with varied I/O patterns and stripe sizes

Fig. 1. Performance statistics of IOR in a hybrid PFS. In (a), server 1-6 are
HServers, and server 7-8 are SServers. In (b), the legend “#K” denotes the
data layout with a fixed-size stripe of #KB on each server.

layout schemes distribute file data across multiple servers with

a fixed-size stripe [8], as shown in Figure 2(a). This can

provide concurrent data access from multiple servers and come

with even data placement on each server. Although widely

used and simple to implement, these schemes are designed

and suitable for homogeneous servers. When applied to hybrid

PFSs, these schemes will raise the following challenges.

First, the performance gap between HServers and SServers

can significantly degrade the performance of PFSs. SServers

always have higher performance than HServers, thus require

less I/O time to complete the same amount of data accesses.

However, current layout methods assign identical stripes for

HServers and SServers, which can lead to severe load im-

balance among heterogeneous servers. To illustrate this issue,

we ran IOR [9] with 512KB request size and 16 processes

on a hybrid OrangeFS file system with the default layout

(Stripe size is 64KB). Figure 1(a) shows the I/O time on

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

341

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

340

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

340

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

340

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

340

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.43

340

each server, normalized to the minimum of all servers. We can

observe that the slow HServers (Server 1-6) take roughly 350%

I/O time compared with fast SServers (Server 7-8), which

means that the potential of the high-performance SServers are

significantly underutilized.
Second, complex I/O workloads may also compromise the

efficiency of I/O systems. Many applications may issue various

I/O requests to different parts of a large file [10], [11]. Request

sizes can be large at one chunk of the file but small at another;

request types can be read operation in one I/O phase but

write in another. However, traditional layout schemes adopt

a fixed-size stripe for the whole file, when in actuality the

stripe size is only suitable for certain I/O workloads [10].

Figure 1(b) shows the performance of IOR with varied request

sizes from 128KB to 2048KB under fixed stripe sizes from

16KB to 2MB. We can see that there is a huge variation in

I/O bandwidth under different I/O workloads and stripe sizes.

It shows that while traditional file-level striping methods may

be efficient for certain parts of a file, but may suffer from

suboptimal overall I/O system performance.
In this paper, we propose a heterogeneity-aware region-level

(HARL) data layout scheme to address the challenges existing

in the current data distribution of PFSs. Since fixed-size stripe

is not optimal for either heterogeneous servers or complex I/O

workloads, HARL relies on a server and application aware

file stripe allocation scheme to determine the optimal stripe

sizes on heterogeneous servers. Specially, it first divides a

file into fine-grained regions according to the changes of an

application’s I/O workload; then, HARL assigns appropriate

file stripe sizes on heterogeneous servers based on their storage

performance for each file region. It essentially represents a

deviation from the traditional one dimensional fixed-size stripe

layout to a two-dimensional varied-size stripe layout. In this

way, HARL significantly speeds up the I/O system perfor-

mance by mitigating load imbalance among heterogeneous

servers and increasing I/O efficiency of data accesses in each

file region. Moreover, HARL requires no modifications to data-

intensive applications and can be extended to any hybrid file

system with two or more file server performance profiles.
Specifically, this study makes the following contributions.

• A mathematical cost model, which considers I/O patterns,

system architecture, network overhead, storage perfor-

mance and data layout characteristics, is introduced to

evaluate the data access time of one file request in a

hybrid PFS.

• A data layout scheme, which logically divides a file

into regions with similar workloads and then optimizes

each region by adjusting the stripe sizes of HServers

and SServers based on the cost model, is presented to

optimize the hybrid file system performance.

• A prototype of the heterogeneity-aware region-level

data layout scheme is implemented and integrated into

MPICH2 [12]. This implementation is transparent to

applications and can be applied to different parallel file

systems to increase its portability.

• A thorough evaluation of HARL has been conducted with

the IOR benchmark and BTIO benchmark. Experimental

results show that HARL can significantly improve the I/O

throughput of hybrid parallel file systems.

The rest of this paper is organized as follows. Section II

discusses the related work. The design and implementation

of HARL is described in section III. Section IV presents

the performance evaluation with commonly used benchmarks.

Finally, the conclusions are summarized in section V.

II. RELATED WORK

In this section we briefly discuss more related work on

improving parallel I/O system performance.

I/O Access Reorganization: A great deal of research

has focused on reorganizing I/O accesses at the parallel I/O

middleware layer. For example, instead of accessing multi-

ple small, noncontiguous requests, data sieving [13] applies

the strategy of accessing a contiguous chunk created by

gathering the noncontiguous requests. Datatype I/O [14] and

List I/O techniques [15] allow noncontiguous I/O requests to

be converted into a single I/O request, thereby limiting the

number of total requests. Collective I/O [13] also optimizes

by rearranging I/O accesses into a larger contiguous request,

but considers multiple processes of a parallel program instead

of an individual process. For write optimization, PLFS [16]

redirects multiple parallel requests to a set of efficiently

reorganized log-formatted files to generate more sequential

write requests, but the read performance of these files may

not be good due to the inevitable data restructuring.

Data Layout in HDD-based File Systems: Parallel file
systems support different data layout strategies, which allow

for numerous data layout optimization methods. Several tech-

niques, including data partition [17], [18], data migration [19],

and data replication [8], [20], [21] are applied to optimize data

layouts depending on I/O workloads. Segment-level layout

scheme logically divides a file to several parts and appoints an

optimal stripe size for each part [10]. Another methodology,

server-level adaptive layout strategy, selects different stripe

sizes depending upon the type of the file server [22]. PARLO is

designed for accelerating queries on scientific datasets by ap-

plying user specified optimizations [23]. AdaptRaid confronts

load imbalance in heterogeneous disk arrays [24] using an

adaptive number of blocks, which cannot be implemented in

PFSs.

Data Layout in SSD-based File Systems: SSDs are
commonly integrated into parallel file systems due to their per-

formance benefits. A popular method is to use SSDs as a cache

of traditional HDDs, e.g. Sievestore [25], iTransformer [26],

and iBridge [27]. Another widely used approach is to utilize

SSDs as a part of data storage, such as I-CASH [28] and

Hystor [29]. Wu et al. [30] discusses the data placement and

scheduling tradeoffs for hybrid storage. Although effective,

the vast majority of research is focused on single file servers.

S4D-Cache [7] uses all SSD-based file servers as a cache

and selectively caches performance-critical data on these high

performance servers. CARL [31] selects and places file regions

with high access costs onto SSD-based file servers at the

342341341341341341

����

�����

���	��

����	��
 ����	��

(a) Fixed-size stripe data layout

����

����	��
 ����	��

��
����� ��
����� ��
�����

�����

���	��

(b) Heterogeneity-aware data layout

Fig. 2. Two data layout schemes in a hybrid parallel file system. This figure
shows how a file’s data are distributed on HServers and SServers, focusing
on the stripe size configuration. The height of the rectangle on each server
represents the stripe size assigned to them. While case (a) uses a fixed-size
stripe for each server within the whole file, case (b) divides a file into multiple
regions and uses varied-size stripes for HServers and SServers to distribute
data on each region.

I/O middleware layer, but the region cannot be placed onto

both SSDs and HDDs. PADP [32] and PSA [33] employ

stripe size variation to improve the performance of hybrid

PFSs. HAS [34] adaptively selects the optimal data layout

for heterogeneous parallel file systems with specific access

patterns.

The above mentioned techniques are effective in improving

the performance of PFSs. However, there is little effort devoted

on data layout considering both heterogeneous servers in a

hybrid PFS and complex I/O workloads at different part of a

file. In contrast, HARL uses adaptive file striping method to

address this issue.

III. HETEROGENEITY-AWARE DATA LAYOUT SCHEME

A. Overview of HARL

The proposed data layout scheme, HARL, aims to optimize

the hybrid PFS layout by using varied-size file stripes instead

of fixed size. To accommodate both heterogeneous servers and

complex I/O workloads, HARL adopts the idea of “divide and

conquer” to achieve the optimal data layout. First, it divides a

large file into several small regions such that each region has

similar I/O workloads. Then it determines the appropriate file

stripe sizes on heterogeneous servers based on their storage

performance for each region.

������������
�

���������

������������
�

���������

����

�����

���

��
����

��	�
��

���� �����!���

������
�"#�
� "�����
�"#�
�����!
�
�"#�
�

����	��
 ����	��

$�%�������!���

����	��
 ����	��

&�
�� ����

Fig. 3. The procedure for HARL scheme

Figure 2(b) illustrates the idea of the heterogeneity-aware

region-level data layout scheme. In this example, HARL

divides a file into three adjacent regions and assigns different

stripe sizes on HServers and SServers for each region. Spe-

cially, since SServers have higher I/O performance, SServers

are usually allocated with larger stripe sizes than HSServer in

each region, so that each server can finish their I/O requests

nearly at the same time. Compared with the traditional layout

(Figure 2(a)), HARL is a fine-grained, adaptive data layout

scheme, which can significantly alleviate the load imbalance

among heterogeneous servers and improve the hybrid PFS

performance.

Many data-intensive applications have predictable I/O pat-

terns [17], [35], [36]. For example, the BTIO application [37],

an I/O kernel responsible for solving block-tridiagonal ma-

trices on a three dimensional array, has this feature. For

BTIO, once the size of the array, the number of time steps,

the write interval, and the number of processes are given,

the I/O behaviors can be accurately predicted before the

program executes. Since the program often run many times

and these patterns do not fluctuate significantly, it provides

an opportunity for HARL to achieve the optimal data layout

based on I/O behavior analysis.

Figure 3 shows the procedure of HARL, which includes

three phases. In the Tracing Phase, the run-time statistics of
data accesses are collected into a trace file during the appli-

cation’s first execution. In the Analysis Phase, by analyzing
the I/O trace, the large file is divided into different regions

according to the application’s I/O characteristics, then each

region’s stripe sizes are determined based on a data access

cost model. In the Placing Phase, the file is placed on the
underlying heterogeneous servers at runtime with the optimal

file stripes obtained in the Analysis Phase. Through these
three phases, HARL can largely improve the application’s I/O

performance in later runs.

B. I/O Trace Collection

A trace collector is responsible for collecting run-time file
access information of parallel applications. While there are

some techniques and tools that can be used for data analysis,

we use IOSIG, which is an I/O pattern collection and analysis

343342342342342342

tool developed in our previous work [38], to capture the

information required by HARL. IOSIG is a pluggable library

of MPI-IO, which supports MPI-IO and standard POSIX IO

interfaces. IOSIG can help to gather all the information of

file operations, including file access type, operation time, and

other process related data. After running the applications with

the trace collector, we can get process ID, MPI rank, file
descriptor, type of operation, offset, request size, and time

stamp information. To facilitate the region division and guide

the optimal data layout, the collector sorts all file read and

write requests in ascending order in terms of their offsets.

C. File Region Division

Since fixed stripe sizes on servers are not able to pro-

vide optimal performance for the whole file, as discussed

in Section I, HARL divides a file into fine-grained regions

and applies special stripe size optimization for each region.

One may logically divide the address space of a file into

regions by a fixed chunk size (e.g. 64MB or 128MB). While

this method is simple, it is difficult to select a proper region

size for varying I/O patterns in real systems. As opposed

to this approach, HARL adopts a varied-size region division

algorithm, as shown in Algorithm 1.

Algorithm 1: File Region Division Algorithm
Input : Sizes of file requests: r0, ..., rn−1; Offset of file

requests: o0, ..., on−1

Output: Offset of each file region O0, ..., Om−1 ; Average
request size for each file region: A0, ..., Am−1

1 sum = 0 ; cv prev = 0; reg = 0 /*region #*/ ;
2 reg init = 0 /*The first request served by this region */;
3 threshold = 100% ;
4 for i = 0; i < n; i++ do
5 sum+ = ri;
6 avg = sum

i−reg init+1
;

7 std =

√
i∑

k=reg init

(rk − avg)2/(i− reg init+ 1) ;

8 cv new = std/avg;
9 if (100 ∗ |cv new− cv prev|)/cv prev < threshold then
10 cv prev = cv new ;
11 else
12 sum = 0 /*Restart with new CV */;
13 cv prev = 0 ;
14 /* Set offset and average request size in region: reg */ ;
15 Oreg = oreg init ;
16 Areg = avg ;
17 reg init = i+ 1 /*The first request served for next

region will be i+ 1 */;
18 /*Created region now increment for next region */

reg ++ ;
19 end
20 end

The algorithm’s goal is to identify continuous file chunk

accessed with closest I/O patterns, so that a given data layout

may benefit more I/O requests. Starting from file offset 0, the

algorithm uses average request size as a common feature to
find the proper splitting points. It reads the first two entries

of the requested size from the trace file and calculates the

TABLE I
PARAMETERS IN COST ANALYSIS MODEL

I/O Pattern Parameters
o Offset of the file request
r Size of the file request
op Type of the file request (read or write)

Architecture Parameters
M Number of HDD servers (HServers)
N Number of SSD servers (SServers)

Network Parameters
t Unit data network transfer time

Storage Parameters
αminh Minimum startup time on HServer
αmaxh Maximum startup time on HServer
βh Unit data transfer time on HServer

αminsr Minimum startup time for read on SServer
αmaxsr Maximum startup time for read on SServer
βsr Unit data transfer time for read on SServer

αminsw Minimum startup time for write on SServer
αmaxsw Maximum startup time for write on SServer
βsw Unit data transfer time for write on SServer

Data Layout Parameters
h Stripe size on HServer
s Stripe size on SServer

coefficient of variation (CV), the result of dividing the standard

deviation by the average request size in the current sample.

It continually adds the next request and calculates the CV

until the trace ends. If the new CV value falls close to the

previous one, namely, the percentage difference between the

new CV value and the previous one is less than 100% (line 9),

it continues adding the next entry and repeats the calculations.

Otherwise, it logs the offset, creates a splitting point, starts a

new region, and restarts calculations with a new CV. As a

normalized measure of dispersion of data distribution, CV is

very sensitive to changes in the average request size and allows

us to detect the point where the application changes the I/O

behavior. At the end, the algorithm returns a list of file regions

with their average request sizes.

One potential issue is that this algorithm may generate too

many regions, which leads to substantial extra metadata man-

agement overhead and compromises the final I/O performance.

To overcome this, we limit the number of created region by

adjusting the threshold value. If the number of the regions is
greater than the number from the fixed-size region division,

as in the segment-level layout scheme [10], the threshold
increases from 100% to a higher value. This tuning can loosen

the algorithm’s sensitivity to the request size variation and

result in less metadata overhead.

D. Access Cost Model

To obtain the optimal stripe size on each server for a given

file region, we introduce an analytical model to evaluate the

data access cost of one file request in a hybrid PFS. The

cost is a function of different parameters listed in Table I,

which fully consider the application, system and data layout

characteristics.

344343343343343343

����

#

'�(')('�(

�

����

��*��
�

����

'�(

����

�

�

��*��
�

� �

��*��
�

� �

��*��
�

�

+������	��
 ,�����	��

)
�

� -�����

 .�-��.�

+������	��
 ,�����	��

)

�

� -�����

 .�-��.�

+������	��
 ,�����	��

)�

� -�����

 .�-��.�

+������	��
 ,�����	��

�

� -�����

 .�-��.�

)

Fig. 4. Four typical cases of file sub-request distribution on servers. (a): Both
beginning and ending sub-requests are located on HServers; (b): Beginning
sub-request is on HServers but ending sub-request is on SServers; (c):
Beginning sub-request is on SServers but ending sub-request is on HServers;
(d): Both beginning and ending sub-requests are on SServers.

Note that the storage parameters show distinct features

of heterogeneous servers. First, SServer has a much smaller

start up time than HServer. Second, SServer has a smaller

data transfer time than HServer. Third, SServer usually has

a slower write performance than its read because write op-

erations require time-consuming garbage collection and wear

leveling [5].

The cost is defined as the I/O completion time of each

file request, which includes three parts: the network transfer

time TX , the storage startup time TS , and the storage transfer
time TT . TX is the data transfer time on network, TS is the
consumption before data operations on disks, and TT is the
time spent on actual data read/write operations.

The request cost T is determined by the maximal cost of all
sub-requests. Assume the sub-requests are distributed on the

m (m ∈ [0,M]) HServers and n (n ∈ [0, N]) SServers, and
the maximal sub-request sizes on HServers and SServers are

sm and sn, then we can calculate the request cost as following.

TX is related with the data size and the network data transfer
rate. It is determined by the maximal network transfer cost of

all sub-requests on HServers and SServers. Thus

TX = max{smt, snt} (1)

TS is determined by the maximal startup time on the m+n
servers. Let α denote the startup time in each HServer, then
the startup time of the m sub-requests can be a variable

X = max(α1, α2, · · · , αm), where αi (1 � i � m) has
an independent identical distribution as α. Assume α follows
an uniform distribution on [αminh , αmaxh], then the probability

function of α is P (α < x) = (x − αminh)/(αmaxh − αminh),
where x ∈ [αminh , αmaxh], and the probability density function
of X is

f(x) =
m× (x− αminh)m−1

(αmaxsr − αminsr)m
, αminh � x � αmaxh (2)

Hence, the startup time on the m HServers is

TSh =

∫ αmaxh

αminh

xf(x)dx = αminh +
m

m + 1
(αmaxh − αminh) (3)

Similarly, the startup time for read sub-requests on the n
SServers is

TSsr = αminsr +
n

n + 1
(αmaxsr − αminsr) (4)

Based on Equation (3) and (4), the overall startup time for

a file read request is

TSR = max{TSh , TSsr} (5)

TT is also determined by the maximal storage transfer time
of all sub-requests. For a read request, it can be calculated as

TTR = max{smβh, snβsr} (6)

Based on Equation (1), (5) and (6), the overall cost of a

file read request is

T = TX + TSR + TTR (7)

The Equations (5), (6) depict the cost for reads, startup

and transfer time for writes (TSW and TTW) will be similar
except we exchange the read parameters with write. Thus the

overall cost of a write request is

T = TX + TSW + TTW (8)

From the above equations, we can see that T depends on

four parameters: sm, sn, m and n, which can be calculated
according to the stripe sizes h and s. We assume the file data
are distributed on the 0 to M+N-1 servers in a round-robin way,

and let S = M ∗ h + N ∗ s, rb = �o/S�, re = �(o + r)/S�,
lb = o−rb∗S, and le = (o+r)−re∗S, then the server number
of the beginning and ending sub-requests are nb = (lb < M ∗
h)?�lb/h� : �(lb −M ∗ h)/s� + M , ne = (le < M ∗ h)?�le/h� :
�(le −M ∗ h)/s� + M , the size of the beginning and ending

fragment are sb = (lb < M ∗h)?�h− lb%h� : h− (le−M ∗h)%s,

se = (le < M ∗ h)?�h − le%h� : s − (le −M ∗ h)%s. Based on

the locations where the file request begins and ends, the sub-

request distributions fall into four cases, as shown in Figure 4.

Due to space limitation, we only describe how to calculate

these parameters for case (a) where the request begins and

ends at certain HServers. Let �r= re− rb, �c= ne−nb, then
the four critical parameters are calculated as in Figure 5. By

following the same arguments, we can derive the parameters

for other cases.

Condition Sm Sn m n

�r=0
�c=0 sb 0 �c +1 0
�c=1 max{sb, se} 0 �c +1 0
�c>1 h 0 �c+1 0

�r�1
�c =0 max{ �r*h-h+sb+se, �r*h} �r*s M N

nb+1=M and ne=0 max{ �r*h-h+sb, �r*h-h+se} �r*s �r =1?2: M N
nb+1!=M or ne!=0 �r *h �r*s �c <-1?(M+1+ �c):M N

Fig. 5. The calculation of critical parameters sm, sn, m and n in case (a)
of Figure 4. These parameters are rated with stripe sizes h and s.

From the cost model, one can find that the access time of a

file request can be significantly impacted by the server stripe

sizes h and s.

345344344344344344

E. Stripe Sizes Determination

Based on the above model for one file request, HARL uses

a heuristic iterative algorithm to find the optimal stripe sizes

on HServers and SServers for each region. The goal is to

minimize the data access cost of all file requests in that region

instead of a single request.

Algorithm 2: Region Stripe Size Determination
Input : File region: reg including file request R0, ..., Rk−1,

Average request size R in Reg
Output: optimal stripe sizes: H for HServer, S for SServer

1 step← 4KB;
2 opt cost←∞;
3 for h← 0;h ≤ R;h← h+ step do
4 for s← h+ step; s ≤ R; s← s+ step do
5 for i← 0; i < k; i← i+ 1 do
6 Reg cost← 0;
7 if operation type(Ri) = Read then
8 Ti ← Calculate cost of Ri according to

Equation (7) ;
9 else
10 Ti ← Calculate cost of Ri according to

Equation (8) ;
11 end
12 Reg cost← Reg cost+ Ti;
13 end
14 if Reg cost < opt cost then
15 opt cost← Reg cost;
16 H ← h;
17 S ← s;
18 end
19 end
20 end

Algorithm 2 shows the procedure of determining the optimal

stripe sizes. Starting from h equaling 0, the loop iterates h in
‘step’ increments while h is less than R. We use the average
request size R because we use it to divide the region in

Algorithm 1 and it is a good metric to describe the common

feature of the workloads. The extreme configuration we do

consider is where h is R, which means dispatching the file
request data only on one HServer may obtain better I/O

performance. In the second loop, s starts from a size which

is larger than h because this configuration can lead to load
balance among heterogeneous servers. We also consider the

extreme case where a file request data only placed on one

SServer. For each pair of stripe sizes configuration, the loop

iterates to calculate the total access cost of all file requests

in that region, according to the proposed data access cost

in Section III-D. Note that the request cost is accumulated

based on the request type (line 9 and 12) since the read

operations come with different performance as write. Finally,

the pair of stripe sizes leading to minimal region access

cost (Reg cost) is chosen. The ‘step’ value is 4KB (line

3), which can be chosen by the user. Finer ‘step’ values

result in more precise h and s values, but with increased cost
calculation overhead. However, the computational overhead of

this algorithm is acceptable because the calculations are simply

arithmetic operations and run off-line.

���
����	
����
 ���������
��������� ���������
�������������
���

� �/01 /201�

��3+1 4/01 �2201�

5 5 5 5
�6�+1 �/01 3�01�

Fig. 6. The data structure of the RST table in HARL scheme

To guide data placement, the optimal stripe sizes for each

region is stored into a global region stripe table (RST).

Figure 6 shows an example of the data structure of RST. In

this example, the file consists of multiple regions, and the

stripe sizes for the first three regions are {16KB, 64KB},
{36KB, 144KB}, and {26KB, 80KB} respectively. Although
the metadata includes more information, its size is not too large

because the number of regions is limited in the region division

algorithm in Section III-C. Moreover, if adjacent regions have

the same optimal stripe sizes, the two regions are combined

into a larger region. This can further reduce the metadata

management overhead.

F. Heterogeneity-Aware Data Placement

In the Placing Phase, the file is placed on the underlying
heterogeneous servers with optimal stripe sizes for each fine-

grained file region. A PFS commonly includes three compo-

nents. The file clients issue requests on behalf the applications,

the servers are responsible for storing file data, and the

metadata servers (MDS) contain the description information of

the files. During a file operation, a client first contacts MDS to

get the files metadata, then it interacts with servers directly. To

perform the optimal data placement, MDSs look up the RST

table according to the request’s offset and length, and return

this information to the client. Then, the client writes the file

data on each server with the optimal stripe size from RST.

G. Implementation

The proposed layout scheme can be implemented either

in the PFS or I/O middleware layer. The former solution

requires specific file metadata communication between clients

and servers to support the region-level striping strategy, which

is not currently supported by PFSs. In order to maintain its

portability and achieve a simple implementation, HARL is

integrated into the I/O middleware layer, which lies above

various PFSs.

We implement HARL within MPICH2 [12] above Or-

angeFS [1]. In the Analysis Phase, we use one file server in
the parallel file system to test the startup time α and data

transfer time β for HServers and SServers with read/write

patterns. These parameters can vary with different I/O patterns.

In addition, we use a pair of nodes (one client node and one file

server) to estimate the network transfer time t. We repeat the
tests thousands of times (the number is configurable), and then

calculate their average values, which are used as the parameter

values.

346345345345345345

In the Placing Phase, HARL logically maps a large file

into multiple OrangeFS files, each representing a separate file

region with similar I/O workloads. In MPICH2, a region-to-
file mapping table (R2F) is used to record the translation

from a logical file region to a physical OrangeFS file. For

each region, data is distributed on underlying servers with the

optimal stripe sizes stored in RST. This can be implemented

by leveraging the existing varied-size striping mechanism in

OrangeFS. RST and R2F are stored in the same directory as

the applications, and are loaded when MPI Init() is triggered

and unloaded when MPI Finalize() is executed. Furthermore,

the MPI File read/write() (and other variants of read/write)

are modified, so file requests can be automatically forwarded

to the files in the PFSs with optimized stripe sizes.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

The experiments were conducted on a 65-node SUN

Fire Linux cluster. Each computing node has two AMD

Opteron(tm) processors, 8GB memory and a 250GB HDD.

The operating system is Ubuntu 9.04 and the parallel file

system is OrangeFS v2.8.6. All nodes are equipped with

Gigabit Ethernet interconnection, and eight nodes are equipped

with additional PCI-E X4 100GB SSD.

Eight nodes are used as computing nodes, eight as HServers,

and eight as SServers. All SServers and HServers are accessed

through one OrangeFS. By default, six HServers and two

SServers are used to build the hybrid OrangeFS file system,

and the file is striped over the file servers in a round-robin

fashion. In the experiments, we compared three data layout

schemes: the fixed-size stripe, randomly-chosen stripe and the

proposed HARL scheme.

The widely-used parallel file system benchmarks, IOR [9]

and BTIO [37], are used to test the hybrid file system

performance.

B. IOR Benchmark

1) Read and Write Results: The experiments were con-

ducted to compare the I/O performance of the hybrid PFS

with the proposed data layout scheme, HARL, and two other

strategies, which use a fixed-size or randomly chosen file

stripe. For the following tests, IOR benchmark runs with

16 processes, and the request size is kept to 512KB unless

otherwise specified. Each process is responsible for accessing

its own 1/16 of a 16GB shared file and continuously issues
requests with random offsets.

Figure 7 demonstrates the I/O performance of the hybrid

file system with different layouts. In this figure, layout ‘64K’

means the stripe sizes are 64KB for all file servers, and ‘36K-

148K’ means the stripe size is 36K for HServers and 148K

for SServers. The rest of the layouts have similar meaning.

It is observed that the proposed heterogeneity-aware layout

can achieve I/O performance improvement for both read and

write operations. While the performances of the fixed-size and

randomly chosen stripe schemes vary with the adopted stripe

size, HARL provides the best performance. With the optimal

131.1 125.0

172.1
192.5

239.9 237.8
217.4 205.6

186.9

242.5

298.3

196.5

117.2

0

50

100

150

200

250

300

350

I/
O

 th
ro

ug
hp

ut
 (M

B/
Se

c)

Stripe size configuration

(a) Read throughput

97.6 102.7 97.9

145.1

193.0
217.3

187.0
206.7

192.1
220.4

271.0

216.7

85.9

0

50

100

150

200

250

300

I/
O

 th
ro

ug
hp

ut
 (M

B/
Se

c)

Stripe size configuration

(b) Write throughput

Fig. 7. Throughputs of IOR with different layouts

0

50

100

150

200

250

300

350

400

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

Number of Processes

16K 32K 64K 128K 256K 512K HARL

(a) Read throughput

0

50

100

150

200

250

300

350

400

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

Number of Processes

16K 32K 64K 128K 256K 512K HARL

(b) Write throughput

Fig. 8. Throughputs of IOR with various number of processes

data layout of {32KB, 160KB} and {36KB, 148KB} for reads
and writes respectively, HARL improves the I/O performance

by 73.4% and 176.7% over the default layout with a fixed-size

stripe of 64KB. Compared with other layouts with different

but fixed-size stripes, HARL improves the performance up to
138.6 % for reads and 177.6 % for writes. Compared with

the randomly chosen stripe strategies, the read performance

can improve to 154.5% and write performance can improve

to 215.4%. The experiments prove HARL performs optimally

and the stripe size determining formula is effective.

347346346346346346

0

50

100

150

200

250

300

Read Write

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

16K 32K 64K 128K 256K
512K 12K-28K 8K-40K 4K-52K HARL

(a) 128KB

0

50

100

150

200

250

300

350

400

Read Write

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

16K 32K 64K 128K 256K
512K 160K-32K 52K-356K 44K-380K HARL

(b) 1024KB

Fig. 9. Throughputs of IOR with various request sizes

2) Varying Number of Processes: The I/O performance is

also evaluated with a varied number of processes. The IOR

benchmark is executed with 8, 32, 128 and 256 processes

at a fixed request size of 512KB. As shown in Figure 8,

the results are similar to the previous test. HARL improves

I/O performance for both read and write operations. With

different number of processes, the I/O throughput increases to

144.1%, 141.8%, 202.7% and 274.1% for reads compared with

layout schemes with a fixed-size stripe, and 116.4%, 182.7%,

192.8%, and 268.3% for writes, respectively. Compared with

the default layout (stripe size of 64KB), the read performance

achieves a 144.1%, 138.1%, 182.3%, and 120.2% improve-

ment, and write performance achieves a 104.8%, 182.2%,

168.5%, and 235.1% improvement. The results illustrate that

HARL has high scalability in terms of number of processes.

3) Varying Request Sizes: In Figure 9, the I/O performance
is examined with varied request sizes. The IOR benchmark is

executed with request sizes of 128KB and 1024KB. HARL

improves read performance from 24.1% to 325.0%, and write

performance from 32.4% to 293.5%, in comparison with

conventional layout methods. In terms of the default layout

with 64KB stripe size, HARL achieves an 80.1% improvement

for read and 147.1% for write operations. Compared with

layout strategies which use randomly varied stripe sizes, the

read performance boosts from 20.6% to 222.3%, and write

performance increases from 22.7% to 263.1%. When the

request size is 128KB, the optimal stripe size pair is {0KB,
64KB}; thus, distributing the file only on the two SServers
offers the highest I/O performance. When the request size

is 1024KB, HARL distributes the file on both HServers and

SServers for higher I/O performance.

4) Varying File Server Configurations: The I/O perfor-

mance is examined with varied ratios of HServers to SServers.

The OrangeFS is built using HServers and SServers with the

0

50

100

150

200

250

300

350

Read Write

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

16K 32K 64K 128K 256K
512K 80K-48K 36K-92K 28K-100K HARL

(a) 7HServers : 1SServer

0

100

200

300

400

500

600

Read Write

I/
O

 T
hr

ou
gh

pu
t (

M
B/

Se
c)

16K 32K 64K 128K 256K
512K 88K-56K 40K-72K 16K-80K HARL

(b) 2HServers : 6SServers

Fig. 10. Throughputs of IOR with various file server configurations

ratios of 7:1 and 2:6. The request size is kept to 512KB.

Figure 10 shows the average I/O throughput with different file

server configurations. As the results depict, HARL improves

I/O performance for both data reads and writes. Read per-

formance increases from 37.6% to 556.1%, and write perfor-

mance improves from 112.2% to 288.7% in comparison with

other layout methods. Compared with the default layout with

a 64KB stripe size, HARL achieves a 474.9% improvement

for reads and a 180.3% for writes. In the experiments, read

and write performance improved as the number of SServers

increased. This is because the I/O performance of SServers is

efficiently utilized by the heterogeneity-aware layout scheme.

If the number of SServers is small, HARL distributes the file

on both SServers and HServers. However, if the number of

SServers is greater, the file is placed only on high-performance

SServers.

5) Varying I/O Workloads: All the above results have

clearly confirmed the efficiency of HARL with uniform I/O

workloads. In the experiments, we evaluated HARL under

varied I/O accesses. In order to simulate the complicated non-

uniform I/O workload, we modified IOR benchmark to access

a four-region data file. The size of each region was 256MB,

1024MB, 2048MB and 4096MB. For each region, IOR issues

requests with different request sizes. Figure 11 shows the

average I/O throughput of the hybrid PFS with different data

layout strategies. From the results, it can be easily observed

that HARL improves read performance from 59.4% to 265.8%,

and write performance from 17.2% to 200.7% compared

with other layout methods. Compared with the default data

layout with a 64KB fixed stripe size, HARL achieves a

255.6% improvement for reads and 116.9% for writes. The

results indicate that the new region-level layout scheme, which

divides a file into regions with similar workloads, is capable

of increasing performance at a large scale for complex I/O

348347347347347347

10
5.

7

10
3.

4

10
8.

7 15
4.

1

19
0.

0

11
7.

2

19
6.

5 24
2.

5

18
9.

0

38
6.

5

0

100

200

300

400

500

I/
O

 T
HR

O
U

G
HP

U
T

(M
B/

SE
C)

16K 32K 64K 128K 256K 512K 36K-148K 28K-172K 512K HARL

(a) Read throughput

11
4.

4

12
2.

4

11
9.

1

14
3.

6 18
5.

8

85
.9

21
6.

7

22
0.

4

22
3.

9 25
8.

3
0

50

100

150

200

250

300

350

I/
O

 T
HR

O
U

GH
PU

T
(M

B/
SE

C)

16K 32K 64K 128K 256K 512K 36K-148K 28K-172K 512K HARL

(b) Write throughput

Fig. 11. I/O throughputs with non-uniform workloads

workloads compared with the existing file-level data layout

schemes.

C. BTIO Benchmark

Apart from IOR benchmark above, we also used BTIO

benchmark to evaluate HARL. BTIO represents a typical sci-

entific application with interleaved intensive computation and

read/write mixed I/O phases. BTIO uses a Block-Tridiagonal

(BT) partitioning pattern to solve the three-dimensional com-

pressible Navier-Stokes equations. We consider the Class A

and full subtype BTIO workload in the experiments. That

is, BTIO writes and reads a total size of 1.69GB data with

collective I/O functions. We use 4, 16, and 64 compute

processes since BTIO requires a square number of processes.

Output file is striped across six HServers and two SServers.

Figure 12 displays the aggregate I/O throughputs. Compared

with the default layout with 64KB stripe size, HARL achieves

163.5%, 116.9%, and 114.8% improvement with 4, 16, 64

processes, respectively. For other varied but fixed-size striping

methods, HARL also demonstrates performance advantages.

0

50

100

150

200

250

300

350

4 16 64

I/
O

 th
ro

ug
hp

ut
(M

B/
Se

c)

Number of Processes

16K 32K 64K 128K 256K 512K HARL

Fig. 12. I/O throughputs of BTIO benchmark with different layouts

D. Discussion

While making all file servers complete their I/O accesses

almost at the same time, HARL would potentially lead to more

storage space consumption on SServers. Fortunately, most file

systems do not fully utilize the storage space in the underlying

devices. Steege et. al found that data centers typically utilize

50% of their storage capacity [39]. In a practical system, this

issue is not frequently encountered since the capacities of

current SSDs are increasing quickly. In the worst case, where

there is a possibility of an SServer running out of space, we

could use a data migration method to balance the storage

space by moving data from SServers to HServers, so the

remaining available space on SServers can be guaranteed for

new incoming requests. This problem can also be addressed by

selectively storing users’ performance-critical data in a hybrid

PFS, while storing the rest of the data in a traditional PFS on

HServers.

While HARL is currently implemented for a single applica-

tion, it can also apply to multiple applications with varying I/O

workloads. We identify the I/O access patterns at the MPI file

level, and do not distinguish between requests coming from

the same application or from different applications. For the

latter case, we may apply our method on different workloads

separately to find their individual data access patterns.

V. CONCLUSIONS

In this study, we have proposed a heterogeneity-aware

region-level (HARL) data layout scheme, which distributes

data across HDD and SSD file servers with the consideration

of application workload and server I/O performance. HARL

divides a file into fine-grained regions with similar workloads,

and adopts varied stripe sizes on HServers and SServers

for each region based on the storage performance of the

servers. We have developed and presented the HARL layout

optimization scheme, which includes dividing the file into

fine-grained regions, determining the stripe sizes of HServers

and SServers in each region, and implementing the optimal

layout scheme under a runtime system. In essence, HARL

provides improved matching of data access characteristics of

applications with data access capabilities of file servers in a

hybrid PFS. Experimental results with representative bench-

marks show that HARL is promising and a viable solution for

hybrid PFSs: the I/O performance improves from 20.6% to

556.1% for reads and 22.7% to 288.7% for writes.

In the future, we would like to extend our cost model

to accommodate more than two server performance profiles.

Another direction is to explore on-line data layout and data

migration methods to make heterogeneous I/O systems more

intelligent and efficient.

ACKNOWLEDGMENT

The authors are thankful to Xin Huang, Bo Feng, Kun Feng,

and Ning Liu for their help toward this work. This study

is supported in part by the Natural Science Foundation of

Hubei Province of China under Grant No. 2014CFB239, the

349348348348348348

Openfund from HPCL under Grant No.201512-02, the Na-

tional Science Foundation of China under Grant No. 61373040

and 61173137, the Ph.D. Programs Foundation of Ministry of

Education of China under Grant No.20120141110073, the US

National Science Foundation under Grant CCF-0937877 and

CNS-1162540.

REFERENCES

[1] “Orange File System,” http://www.orangefs.org/.
[2] S. Microsystems, “Lustre File System: High-performance Storage Ar-

chitecture and Scalable Cluster File System,” Tech. Rep. Lustre File
System White Paper, 2007.

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large
Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, 2002, pp. 231–244.

[4] D. Nagle, D. Serenyi, and D. Serenyi, “The Panasas ActiveScale Storage
Cluster: Delivering Scalable High Bandwidth Storage,” in Proceedings
of the 2004 ACM/IEEE Conference on Supercomputing, 2004.

[5] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic Char-
acteristics and System Implications of Flash Memory Based Solid State
Drives,” in Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, 2009, pp. 181–
192.

[6] M. Zhu, G. Li, L. Ruan, K. Xie, and L. Xiao, “HySF: A Striped File
Assignment Strategy for Parallel File System with Hybrid Storage,” in
Proceedings of the IEEE International Conference on Embedded and
Ubiquitous Computing, 2013, pp. 511–517.

[7] S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart Selective SSD Cache
for Parallel I/O Systems,” in Proceedings of the International Conference
on Distributed Computing Systems, 2014.

[8] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent
Application-Specific Data Layout Scheme for Parallel File Systems,” in
Proceedings of the 20th International Symposium on High Performance
Distributed Computing, 2011, pp. 37–48.

[9] “Interleaved Or Random (IOR) Benchmarks.” [Online]. Available:
http://sourceforge.net/projects/ior-sio/

[10] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A Segment-Level
Adaptive Data Layout Scheme for Improved Load Balance in Parallel
File Systems,” in Proceedings of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2011,
pp. 414–423.

[11] “Application I/O Traces: Anonymous LANL App2,”
http://institutes.lanl.gov/plfs/maps/, 2014.

[12] A. N. Lab, “MPICH2 : A High Performance and
Widely Portable Implementation of MPI.” [Online]. Available:
http://www.mcs.anl.gov/research/project-detail.php?id=2

[13] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O
in ROMIO,” in The Seventh Symposium on the Frontiers of Massively
Parallel Computation, 1999, pp. 182–189.

[14] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross, and
W. Gropp, “Noncontiguous I/O Accesses through MPI-IO,” in Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003, pp. 104–111.

[15] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp, “Efficient
Structured Data Access in Parallel File Systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2003, pp. 326–
335.

[16] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: A Checkpoint Filesystem for Parallel
Applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–12.

[17] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings
of the 17th Annual International Conference on Supercomputing, 2003,
pp. 252–260.

[18] S. Rubin, R. Bodik, and T. Chilimbi, “An Efficient Profile-Analysis
Framework for Data-Layout Optimizations,” ACM SIGPLAN Notices,
vol. 37, no. 1, pp. 140–153, 2002.

[19] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “Borg: Block-Reorganization for Self-
Optimizing Storage Systems,” in Proccedings of the 7th conference on
File and Storage Technologies, San Francisco, California, 2009, pp. 183–
196.

[20] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy Con-
sumption,” in Proceedings of the 20th ACM Symposium on Operating
Systems Principles, 2005, pp. 263–276.

[21] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Sam-
atova, “RADAR: Runtime Asymmetric Data-Access Driven Scientific
Data Replication,” in Proceedings of the International Supercomputing
Conference. Springer, 2014, pp. 296–313.

[22] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A Server-Level
Adaptive Data Layout Strategy for Parallel File Systems,” in Proceedings
of the IEEE 26th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum, 2012, pp. 2095–2103.

[23] Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky, X. Ma,
and N. F. Samatova, “PARLO: PArallel Run-time Layout Optimization
for Scientific Data Explorations with Heterogeneous Access Patterns,” in
Proceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 2013.

[24] T. Cortes and J. Labarta, “Taking Advantage of Heterogeneity in Disk
Arrays,” Journal of Parallel and Distributed Computing, vol. 63, no. 4,
pp. 448–464, 2003.

[25] T. Pritchett and M. Thottethodi, “SieveStore: a Highly-Selective,
Ensemble-level Disk Cache for Cost-Performance,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
2010, pp. 163–174.

[26] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve
Disk Scheduling for High-performance I/O,” in Proceedings of 26th
IEEE International Parallel and Distributed Processing Symposium,
2012, pp. 715–726.

[27] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving Unaligned
Parallel File Access with Solid-State Drives,” in Proceedings of 27th
IEEE International Parallel and Distributed Processing Symposium,
2013.

[28] Q. Yang and J. Ren, “I-CASH: Intelligently Coupled Array of SSD and
HDD,” in Proceedings of the IEEE 17th International Symposium on
High PerformanceComputer Architecture, 2011, pp. 278–289.

[29] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the international conference on Supercomputing, 2011,
pp. 22–32.

[30] X. Wu and A. N. Reddy, “Exploiting Concurrency to Improve Latency
and Throughput in a Hybrid Storage System,” in Proceedings of IEEE
International Symposium onModeling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2010, pp. 14–23.

[31] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware
Region-Level Data Placement Scheme for Hybrid Parallel I/O Systems,”
in Proceedings of the IEEE International Conference on Cluster Com-
puting, 2013.

[32] S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data
placement in hybrid parallel file systems,” in Proceedings of the 14th
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP), 2014.

[33] S. He, Y. Liu, and X.-H. Sun, “A Performance and Space-Aware Data
Layout Scheme for Hybrid Parallel File Systems,” in Proceedings of
the Data Intensive Scalable Computing Systems Workshop, 2014, pp.
563–576.

[34] S. He, X.-H. Sun, and A. Haider, “HAS: Heterogeneity-Aware Selective
Data Layout Scheme for Parallel File Systems on Hybrid Servers,”
in Proceedings of 29th IEEE International Parallel and Distributed
Processing Symposium, 2015.

[35] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-Direct and
Layout-Aware Replication Scheme for Parallel I/O Systems,” in Pro-
ceedings of 27th IEEE International Parallel and Distributed Processing
Symposium, 2013.

[36] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
Identification of Application I/O Signatures from Noisy Server-Side
Traces,” in Proceedings of the 12th USENIX conference on File and
Storage Technologies, 2014, pp. 213–228.

[37] “The NAS parallel benchmarks,” www.nas.nasa.gov/publications/npb.html,
2014.

[38] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 196–203.

[39] P. Steege, “50% Storage Utilization: Are Data Centers Half Empty
or Half Full?” http://storageeffect.media.seagate.com/2009/01/storage-
effect/50-storage-utilization-are-datacenters-half-empty-or-half-full/,
2014.

350349349349349349

View publication stats

https://www.researchgate.net/publication/307695603

