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Abstract
HPC, Big Data Analytics, and Machine Learning have become in-

creasingly intertwinedaspopularmodels suchasLLMsandDiffusion

Models have been driving discovery in scientific fields. However,

each of these domains has its own storage infrastructurewith unique

I/O interfaces and storage systems, requiring feature sets that are

often incompatible. Users with experience in one domain lack the

expertise to change their applications to match the data stacks of

the other domains, necessitating expensive conversions. There is

a need for a transparent solution for the unification of disparate

data stacks for the triple convergence of HPC, Big Data, and ML

that can provide the required functionality while achieving higher

performance. To better support converged HPC, Big Data, and ML

workflows, this paper proposes DTIO, a scalable I/O runtime that

unifies the disparate I/O stack for modern scientific MLworkflows.

DTIO utilizes a unique DataTask abstraction to express the move-

ment of data, its ordering, and its dependencies on other data as a

task. DTIO achieves a unification of scientific and ML workflows

by utilizing intelligent mapping of interfaces, and automatically de-

termines the best method to relate their unique semantics. DTIO’s

online translation with DataTask caching can improve performance

by 49.6% compared to offline translation methods. DTIO also offers

numerous optimizations, such as asynchronous I/O and aggregation.

CCS Concepts
•Computingmethodologies→ Cooperation and coordination; •
Computer systems organization→Distributed architectures.
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1 Introduction
HPC, Big Data Analytics, andMachine Learning (ML) are increas-

ingly converging [14]. While Big Data andML have long operated

together in applications such as recommendation systems and fraud

detection, the rise of tightly coupled patterns, especially in ML, has

prompted an acceleration of this convergence with HPC systems.

For scientific applications, this trend presents an unprecedented op-

portunity. For example, recent work has showcased the value of AI-

enabled HPCworkflows, replacing traditional heuristic approaches

in tasks like adaptive workflow steering [17]. Conversely, the rise of

surrogate models enables the acceleration of traditional simulations

by orders of magnitude [1, 33]. Revolutionary progress in ML nat-

ural language processing and reasoning capabilities is beginning to

empower scientists with versatile research assistants. Transformer

capabilities are swiftly evolving and are close to or even surpass-

ing human levels in many advanced tests (ARC AGI, Frontier Math,

GPQA). These capabilities are emerging in scientific domains too, as

illustrated by science-oriented LLMs such as Google AI co-scientist.

Converged workflows that combine HPC, Big Data and ML tasks

generate massive datasets that are continuously increasing expo-

nentially in both complexity and volume. To obtain the most value

out of these massive datasets, different types of tasks need to ac-

cess them, compute intermediate results and share the intermediate

results at large scale. This aspect is particularly challenging and

keeps increasing in complexity as the I/O runtimes and datamanage-

ment solutions employed by different communities keep growing

organically and keep diverging from each other.

Challenges: Specifically, HPC, Big Data Analytics, and Machine

Learning feature a variety of data formats, data models, and seman-

tics, aswell as I/O libraries that implement them. Table 1 summarizes

several aspects of interest. Fundamental differences exist in the unit
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of data and APIs, while other differences concern aspects such as:

in-place updates vs. new objects to match computational paradigms

(imperative vs. functional) and/or support required features (ver-

sioning, provenance tracking), structured vs. unstructured data (the

latter being especially popular in the Big Data Community) and

the implications this has on metadata management. From a non-

functional perspective, I/O patterns and parallelism considerations

have influenced HPC applications to use more regular I/O patterns

that involve large, collective I/O operations to achieve scalability.

Big Data Analytics applications also tend use large but less coor-

dinated I/O operations. ML applications feature the most difficult

patterns [14], as they operate with irregular I/O patterns that often

involve small I/O operations (e.g., needed for sampling) at large scale,

which complicates concurrency control.

Category Big Data HPC ML

Data unit Objects Files DataFrames

Update New object In-place New table

APIs REST/SOAP PFS/POSIX Pythonic

Metadata Custom Fixed Fixed

Structure Unstructured Structured Both

I/O Patterns Lg/Irregular Lg/Regular Sm/Irregular

I/O Parallelism Irregular Collectives Both

Table 1: Interoperability at the intersection of Big Data
Analytics, HPC andML: Categories of interest.

Second, hybrid workflows that combine Big Data Analytics, HPC,

andML tasks often rely on producer-consumer patterns that need to

exchange inputs and outputs. Some are ephemeral and do not need

to be persisted. Therefore, conversions and translations between

data formats and access models need to connect data sources and

sinks in real time, as directly as possible (i.e., direct links between

compute nodes) and need to support streaming (i.e., to enable partial

processing before all data is available). Therefore, it is not enough

to offer simple read/write access semantics. Instead, there is a need

to capture more information about data sources and sinks, access

pattern and intent, as well as persistency requirements.

Third, thedifferences in the computational paradigmscorrespond-

ing to each domain resulted in different benefits and limitations. Big

Data is more resilient [26] due to stateless and loosely coupled tasks

that synchronize through persistent states shared on the storage

subsystem, the latter being subject to synchronization bottlenecks

under concurrent access. HPC features mostly tightly coupled tasks,

and this influenced the interactions with the storage (e.g. MPI I/O

collectives to match MPI computational collectives). Despite the

potential for scalability [26], the underlying parallel file systems are

based on the aging POSIX model and feature limited aggregated I/O

bandwidth. The ML ecosystem is rapidly evolving and incorporates

ideas from both the Big Data Analytics and HPC ecosystem of I/O

libraries. Despite its flexibility and opportunities for optimization,

this increases the complexity and fragility of the storage subsystem.

Thus, there is a need to combine the best practices from each of these

domains.

Limitations of state-of-art: Unfortunately, the Big Data An-
alytics, HPC and ML communities have developed their own rich

ecosystem of data management frameworks and I/O runtimes in-

dependently of each other. Thus, the diversity of data formats and

access models leads to a major inter-operability limitation that re-

mains largelyunaddressedby state-of-art.Users of hybridworkflows

typically implement their own ad-hoc conversion between different

data formats, and then use separate I/O runtimes optimized for each

data format and type of task in the workflow. This leads to large

conversion overheads and expensive data copies, which leads to

suboptimal use of storage resources. To avoid the complexity of di-

rect communication between the tasks, storage repositories such as

parallel file systems and object stores (e.g., Amazon S3) are typically

used as proxies, at the expense of high (de)serialization overheads

and low I/O bandwidth, especially under concurrency. Such reposi-

tories are not optimized for ephemeral data or streaming semantics

that are needed by producer-consumer patterns, which leads to un-

necessary serialization of computations and missed opportunities

for overlapping computations and I/O.

Contributions: To address the aforementioned limitations, we

propose DTIO, a scalable I/O runtime that unifies the disparate data

stack formodern scientific andMLworkflows. To unify diverse inter-

disciplinarydata stacks,DTIOutilizes auniqueDataTaskabstraction,

which expresses data content, user-intended data transformations,

and dependencies (e.g., data sources and data sinks or consistency

guarantees like read-after-write). The DataTask enables DTIO to

flexibly support conversion of data across a variety of high- and

low-level I/O interfaces, while enabling key optimizations that can

maintain or improve I/O performance. DTIO’s contributions are as

follows:

(1) DataTask Abstraction: A unique representation of data that

encapsulates content, dependencies, and intent.

(2) UnificationacrossBigDataAnalytics,HPCandML:DataTasks
inherently permit a wide variety of data format transformations

and storage backends in order to satisfy the diverse requirements

of triple-converged HPC, Big Data, and MLworkflows.

(3) Optimized I/O Pipelines: DataTasks enable a new accelerated

I/O pipeline that includes optimizations such as aggregations,

asynchronous lazy loading, and accelerated I/O resolution.

2 Motivating Scenario
To illustrate the challenges presented in § 1, we consider the case of

PtychoNN, a deep learning ptychography workflow that solves the

data inversion problem in order to perform imaging beyond the reso-

lution limits of typical x-ray optics [7]. PtychoNN combines aspects

of all threedomains:BigDataAnalytics,HPCandML: it featuresaBig

DataAnalytics pre-processing stage (Map-Reducepattern) that takes

the raw images from instruments, applies variousfilters andprepares

them in a common format (HDF5) to be reused by multiple applica-

tions (including PtychoNN). Then, anHPC stage running on anHPC

machine reads the common format andconverts theHDF5files tonpz
and npy format that is popular in the Python ecosystem. Both reads

andwrites are sequential. From there, a distributedML training (data

parallel) reads the npz and npy files concurrently (random small I/O

access) and feeds it to a PyTorch training pipeline, which ultimately

produces checkpoints of the trainedmodel (HDF5). The lack of inter-

operability between these formats and access patterns results in

several challenges: (1) the three stages happen sequentially despite

opportunities to streamline them as a pipeline; (2) a parallel file sys-

tem is used to store intermediate results instead of on-the-fly conver-

sions anddirect communicationbetween the tasks; (3) I/Ooperations
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are blocking instead of asynchronous, which limits the opportunity

to overlap I/O with computations. We aim to solve such challenges.

3 Background and RelatedWork
Data Formats: Scientific data is often stored in higher-level formats

such as HDF5 [16], Zarr [24], and numpy arrays [31]. Some useful

features of these formats include multidimensional data selection

and I/O on non-character data. HDF5 in particular has awide variety

of configurations for improving performance, such as compression,

metadatacompaction, andcaching [9].DTIOaims toprovideefficient

interopability between diverse formats to improve the performance

of hyperconverged workflows.

Data Format Translation: Conversions between different data
formats exist in various forms. Pandoc is a tool to convert between

various document formats such as PDF, Microsoft Word, Latex, and

more [20]. Bioconvert maps various forms of life science data, in-

cluding CSV, YAML, BAM, and FastQ [4]. Typically, data format

conversions are performed offline by reading in the data in one for-

mat, converting it, and writing out in the alternative format. A data

format translator with numerous formats will tend to use an inter-

mediate representation in order to simplify the in-memory transla-

tion [8]. On-the-fly translation is similar, but uses the in-memory

representation instead ofwriting back to disk. On-the-fly translation

is performed directly within the application workload, which can be

more efficient but also presents an overhead. On-the-fly translation

is effectively a data transformation, and as such is often performed

on real-time data [30]. Unlike DTIO, most on-the-fly translation is

not transparent to the user, as it requires the application to use both

interfaces being translated in its code.

I/O Task Systems: I/O tasks have been explored in the litera-

ture, usually with the intent of leveraging task systems to improve

performance rather than creating a standard for task-based I/O.

Labios [18] provides a task-based storage systemwhich uses tasks

to asynchronously perform the requested I/O operation on one of

a pool of workers. Labios is the basis for DTIO, but DTIO differs

due to its focus on providing for the triple convergence of ML, Big

Data, and HPC. ExaHDF5 [3] is an advanced high-performance I/O

task system designed for large-scale scientific applications that in-

corporates asynchronous I/O via a VOL layer which leverages the

Argobots [28] task system. DataStates [25] is an I/O task system

designed to manage large datasets efficiently in parallel processing

environments. It is a data model rather than a runtime, but is compa-

rable to DTIO in its expression of data lineage as a series of states,

each containing content and metadata. Compared to related task

systems, DTIO features expanded interface interception and task

definitions.

Storage Bridging: Some work has been done to provide a bridge

whichallowstransparentaccess todifferent storagesystems. IRIS [19]

provides a middleware library that bridges the gap between file sys-

tems and object stores. SciDP [13] provides a similar bridge for HPC

and big data applications. NIOBE [12] bridges the same gap, but as

a transparent service instead of a library, and therefore it enables

asynchronous I/O abstractions. Typically, transparency and asyn-

chronicity are considered valuable aspects in a bridge, as the bridge

can be viewed as a sort of I/O task manager which decides where to

place I/O operations and presents the data associated with them in a

manner that users can access them across interfaces. Unlike Iris and

NIOBE,DTIOuses the intermediaryDataTask representation,which

gives it more flexibility when it comes to intercepting and mapping

a variety of data formats. DTIO also provides more optimizations

for the data, such as advanced caching and prefetching capabilities.

Summary: Despite a large variety of I/O runtimes and tools

in the Big Data Analytics, HPC and ML, interoperability without

sacrificing performance and scalability is still a major challenge. To

our knowledge, we are the first to explore the unification of various

I/O optimizations from HPC, Big Data, and AI ecosystems and their

applicability to efficient data interoperability in hyperconverged

workflows.

4 ANovel DataTask I/O Stack Design
In this work, we present a new scalable I/O system that aims to trans-

parently unify the disparate data stacks for modern HPC, Big Data,

and ML workflows. This system is designed around the DataTask, a

novel data structure that encapsulates the content, intent, and depen-

dencies of data. Unlike conventional approaches that treat I/O as pas-

sive and arbitrary data movement, DataTasks are powerful enough

to represent data from a wide variety of I/O formats across HPC,

Big Data, and ML while enhancing overall I/O performance through

composable, data-intensive operations executed transparently near

the data itself. This includes transparent data format conversion

operators required for efficient data interoperability. DataTasks can

be orchestrated by higher-level scheduling algorithms to improve

the position and composition across DataTasks in the systemwhile

considering the computational demands and interference caused by

them. For example, aggregating smaller DataTasks into larger ones

to reduce latency penalties caused by complex metadata operations

on backend storage. This section details the structure and properties

of DataTasks that can be used to build efficient I/O stacks.

The design of a DataTask-based I/O system is built upon the

following key objectives:

(1) Transparent:TheDataTaskabstractionshould transparently
and conveniently capture user intent and data.

(2) Lightweight: Unification of diverse I/O interfaces should

have minimal overhead to applications.

(3) Scalable: The system should scale for increasing numbers of

producer or consumer clients, as well as larger data.

4.1 DataTask: AnActive, Composable I/O Unit
DataTask Specification: In order to unify various unique I/O in-

terfaces to account for their varied structure and intentions, we

introduce a novel abstraction, the DataTask. Unlike conventional

approaches that treat I/O as passive data movement, DataTasks en-

capsulates I/O operations and associated transformations as active,

composable units.

The specification for a DataTask is shown in Listing 1. DataTasks

have fields for their ID, content, dependencies, type, property list,

and context. ID is a unique identifier for the DataTask. Content is

an object representing the data of the task, generally a string or

other allocated data buffer in addition to operational information

such as filenames, offsets, and size data. Dependencies are other

DataTasks which this DataTask is known to depend on. This is used

to establish sequencing in asynchronous modes when Read After
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Write consistency is needed. The type is the operation associated

with the DataTask. They include types for performing reads, writes,

staging in and out of data, etc. The property list contains config-

urations particular to that DataTask, such as asynchronous mode,

row-wise vs columnar ordering, and which interface to translate to.

The context contains special arguments that get passed to a partic-

ular interface. For example, context can specify interface-specific

compression mechanisms, chunking styles, or anything else that

gets passed as an argument to the interface.

Listing 1: The DataTask Structure
typedef s t ruc t DataTask {

i n t 6 4 _ t t a s k _ i d ;

c on t en t ∗C ;

DataTask ∗ dependenc i e s ;

t a s k _ t yp e t _ t yp e ; / / e . g . , r ead , w r i t e , s u p e r
d t _ p r o p e r t i e s ∗ p l i s t ;

c on t e x t ∗ c t x ;

}

SuperTasks:One importantoperation type iscalledsuper,which
can be used to create a SuperTask. A SuperTask is a specialized form

of DataTask associated with metadata and used to represent higher-

level structure of data, such as directories, HDF5 files and groups, etc.

When creating a SuperTask, existing Dependencies will be included

as members of the SuperTask, but newmembers can also be added

with an add_to_super operation type. The dependencies of a Super-
Task are tracked in a DataTask registry, and the updates occur there.

SuperTasks allow the system to preserve the user-facing structure

of the data, for example, a single HDF5 file can have multiple groups

and datasets that need to be accessed as if they were a folder with

multiple files.

Benefits of DataTasks: The DataTask abstraction provides sev-
eral key advantages over traditional, monolithic I/O approaches.

First, it enablesfine-grainedcontrolover I/Ooperations.EachDataTask

represents a distinct unit of work, allowing for precise scheduling

and resource allocation. Second, it facilitates composability.Complex

I/O workflows can be built by chaining together multiple DataTasks,

with dependencies explicitly defined. This modularity simplifies

development and promotes code reuse. Third, it enhances porta-

bility. By abstracting away the specifics of the underlying storage

system, DataTasks can be executed on diverse platforms without

modification. Fourth, it enables optimization. The system can an-

alyze DataTask dependencies and characteristics to apply various

optimizations, such as request coalescing, prefetching, and data

placement strategies, transparently to the application. Fifth, it fosters

asynchronicity. DataTasks can be executed concurrently, overlap-

ping I/Owith computation andmaximizing resource utilization. This

is crucial for hiding I/O latency and improving overall application

performance. Sixth, it improves debuggability and explainability. Be-

cause a DataTask represents a logical unit of work with clear inputs,

outputs, and dependencies, it becomes much easier to track the flow

of data and identify the source of performance bottlenecks or errors.

4.2 Flexible I/O through DataTasks
DataTask Pipeline: The design of the I/O system is built around

a structured pipeline that transforms traditional I/O operations into

a flexible, schedulable, and optimized process using DataTasks. The

pipeline is built around three main components: Task Composition,

Task Scheduling, and Task Execution, each responsible for a distinct

phase of the pipeline.

The pipeline begins with Task Composition, executed in the user

space of the application. This component applies predefined logic to

transform intercepted I/O requests into DataTasks. Tasks are com-

posed with awareness of their broader context (e.g. dependencies, or

destination). This awareness enables the implementation of compo-

sition policies such as aggregation, reordering, and replication that

can be flexibly applied to DataTasks based on their use case.

Once DataTasks are generated, they are queued for scheduling.

Since DataTasks carry knowledge of its transformations and depen-

dencies, the Task Scheduling can combine this knowledge with fac-

tors such as data locality, or system load to have an novel understand-

ing of both the supply and demand of the system. This knowledge

can then be leveraged to determine optimal execution strategies that

dynamically consider the best executor for the DataTask, ensuring

efficient execution across distributed nodes.

Finally, the Task Execution phase, this phase is executed on an

application-independent, distributed pool of executors that inter-

face with the storage backends. With an understanding of the data

characteristics, final interface, and transformation requirements,

these executors can execute the DataTasks by: transforming the

data to match the expected storage interface; applying performance

optimizations such as batching and interface-aware compression;

and executing the actual I/O operations.

Composition Policies: To accommodate the diverse behaviors

and requirements of different domains, pipelines can be assigned

composition policies. These policies define broad operational be-

haviors that dictate how data is processed and managed. They are

inherently flexible to support a wide range of domain-specific needs.

For example, inBigData environments,where resilience andavail-

ability are critical, DataTasks can employ a duplication policy. This

policy creates multiple duplicates of a DataTask, scheduling them

immediately across different destinations to ensure redundancy and

fault tolerance. Similarly, in HPC environments, where workloads

often rely on HDD-backed PFSs andmust handle many small I/O op-

erations efficiently, DataTasks can apply an aggregation policy. This

policy ensures that DataTasks within a pipeline are combined and

only delivered once a predefined time or size threshold is reached,

improving performance. Beyond these, additional behaviors can be

defined. For instance, prefetching can be implemented through a pre-

dictive policy, which leverages knowledge from previous DataTasks

to generate speculativeDataTasks. TheseDataTasks are dynamically

assigned to I/O operations as they are intercepted, reducing latency.

This policy is most commonly applied during Task Execution, when

a file is opened and stages its data into an executor before any read

has occurred; DataTasks can be generated to read that data from

executors before any requests are truly received.

4.3 Optimizing DataTaskmanagement
Leveraging DataTask dependencies: DataTasks can mark and

store data dependencies with other DataTasks. For example, a write-

appendDataTaskcanmarkanotheras adependency toensureproper

ordering, or a read DataTask can mark a write one as a dependency
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to ensure correctness. Beyond serving to implement high-level re-

lationships between the data, intelligent use of this knowledge can

help build an asynchronous, lazy scheduling of Data Tasks.

When DataTasks are created, they get stored temporarily at the

client in a circular buffer awaiting scheduling. If, instead of enabling

scheduling immediately, the system tracks the dependencies of the

DataTask, we canmaintain it in local memory until one of the depen-

dent DataTasks gets submitted, or some maximum time or memory

size is reached.

A dispatch algorithm (algorithm 1) is used to decide when and

what DataTask needs to be scheduled. First, the algorithm selects

the stalest DataTask (𝑝) in the pool enabling it for scheduling. Once

done, a second pass through the pool looks for any DataTask still

in it that 𝑝 is dependent on and also marks them for scheduling.

The staleness of a DataTask refers to time since its last dependency

was added to the pipeline, by waiting until the dependencies of a

DataTasks have been established in the pipeline, the system can:

resolve them together to improve performance, extend the time to

execute composition policies, and minimize I/O movement.

Algorithm 1 Scheduling Dispatch Algorithm
1: procedureDispatch(DataTask𝑑𝑡𝑠[])
2: Let 𝑃 be the pool of tasks to be scheduled

3: Let𝑇 be the (empty) pool of tasks to be dispatched

4: Append𝑑𝑡𝑠 to𝑇
5: while sizeof(𝑃 ) exceeds memory threshold do
6: 𝑝← stalest task in 𝑃
7: remove 𝑝 from 𝑃 and append 𝑝 to𝑇

8: for 𝑝 ∈𝑃 do
9: if stale(𝑝) then
10: remove 𝑝 from 𝑃 and append 𝑝 to𝑇
11: continue
12: for 𝑡 ∈𝑇 do
13: if 𝑡 depends on 𝑝 then
14: remove 𝑝 from 𝑃 and append 𝑝 to𝑇
15: break
16: for 𝑡 ∈𝑇 do
17: send 𝑡 to scheduler

Minimizing I/Omovement through accelerated I/O resolu-
tion: As a result of this lazy scheduling, the system can attempt to ac-

celerate the resolution of DataTasks by obtaining part or all of its I/O

from the local ring buffer. Note that this allows serving I/O requests

without hitting storage, so long as the data exists in thememory pool

systems. The methodology for resolution is shown in algorithm 2.

To summarize, resolution of a DataTask from existing buffers

involves querying the DataTask registry for DataTasks associated

with the current file ordered by recency (line 2), calculating sections

of the current DataTask satisfied by existing buffers (lines 4-9), and

performing buffer copies from existing buffers into the result (lines

10-16). After this buffer resolution, it is possible that the DataTask

will not be completely satisfied by existing buffers, in which case ad-

ditional reads from storagemay remain necessary. The 𝑟𝑎𝑛𝑔𝑒_𝑏𝑜𝑢𝑛𝑑

variable from the resolution algorithm can be utilized to determine

which indices within the file remain to be fetched and convert them

to DataTasks.

DataTasks enable a new paradigm of I/Omanagement, that can

leverage enriched knowledge of the data to transparently, and effi-

ciently manage diverse I/O while staying flexible enough to support

Algorithm 2DataTask Buffer Resolution Algorithm
1: procedure Resolve-DataTask(DataTask𝑑𝑡 , buffer 𝑟𝑒𝑠𝑢𝑙𝑡 )
2: Let𝑇 be the pool of DataTasks associated with the file𝑑𝑡 .𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒

(queried from the task registry, by recency)

3: Let 𝑟𝑒𝑠𝑜𝑙𝑣𝑒_𝑑𝑡𝑠←{}
4: Let𝑟𝑎𝑛𝑔𝑒_𝑏𝑜𝑢𝑛𝑑 represent an array of the locations requested by𝑑𝑡
5: for 𝑡 ∈𝑇 do
6: if 𝑡 satisfies part of 𝑟𝑎𝑛𝑔𝑒_𝑏𝑜𝑢𝑛𝑑 which is not already satisfied

then
7: Store the offsets and sizes of 𝑡 that are required as 𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠

(calculated during satisfaction)

8: Append (𝑡 , 𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 , and the starting offset of 𝑡 in 𝑑𝑡 ) to
𝑟𝑒𝑠𝑜𝑙𝑣𝑒_𝑑𝑡𝑠

9: Mark the satisfied range of 𝑟𝑎𝑛𝑔𝑒_𝑏𝑜𝑢𝑛𝑑

10: for (𝑟𝑡,𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠,𝑑𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ) ∈ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒_𝑑𝑡𝑠 do
11: Read 𝑟𝑡 .𝑑𝑎𝑡𝑎 into 𝑟𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟
12: for (𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡,𝑡_𝑠𝑖𝑧𝑒,𝑑𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ) ∈ 𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 do
13: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑜 𝑓 𝑓 𝑠𝑒𝑡 is not initialized then
14: Let 𝑑𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑑𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 −

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑜 𝑓 𝑓 𝑠𝑒𝑡
15: Let 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑜 𝑓 𝑓 𝑠𝑒𝑡←𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡+𝑡_𝑠𝑖𝑧𝑒
16: Copy 𝑡_𝑠𝑖𝑧𝑒 elements from 𝑟𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 at 𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 to

𝑟𝑒𝑠𝑢𝑙𝑡 starting at𝑑𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡

Figure 1: DTIO software stack: offers a unified storage inter-
face, support for domain-specific interfaces, the DataTask
abstraction, an I/O optimization layer, and the concept of
vertical slices representing DTIO’s middleware role across
application domains.

complex, converged scientific workflows. We believe that DataTask-

based systems could serve as a viable alternative to traditionalmono-

lithic I/O systems.

5 The DTIO System
DTIO is a lightweight DataTask-based I/O middleware. Its architec-

ture can be viewed as a layered software stack, shown in figure 1.

DTIO sits between applications and underlying storage systems,

which it accesses via I/O and storage interfaces. This stack encom-

passes several key components, each contributing to DTIO’s ability
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Figure 2: Data Flowwithin the DTIOArchitecture: six stages
of I/O processing within DTIO: (1) Applications initiate I/O
requests; (2) Legacy I/O calls are intercepted and converted
into DataTasks; (3) DataTasks are prepared for execution
during the TaskComposition stage; (4) Tasks are decomposed
andqueued; (5) Tasks are scheduled andassigned to executors;
and (6) Executors perform the I/O operations.

to unify and optimize I/O. At the highest level, a unified storage

interface provides a consistent access point for diverse storage types.

Below this, support for domain-specific I/O interfaces caters to the

specialized needs of different application areas (e.g., HPC, Big Data,

ML). DTIO intercepts a wide variety of interfaces such as POSIX,

STDIO, HDF5, and Numpy. When interacting with storage, DTIO

can also utilize these interfaces to access different storage and data

layouts. The core of DTIO’s functionality lies in its handling of

DataTasks, which represent I/O operations as schedulable units.

5.1 Data Flow in DTIO
Figure 2 showcases the six key stages of data flowwithin the DTIO

system,which transforms traditional I/O requests toDataTasks, opti-

mizes them, and delivers the data to the storage system.Applications

begin by issuing standard I/O requests (Stage 1). These requests are

transparently intercepted and converted into DataTasks (Stage 2),

decoupling the application from the underlying I/O implementa-

tion. The Task Composition stage (Stage 3) creates the DataTasks,

and applies data policies. Subsequently, DataTasks are queued for

execution (Stage 4). The Task Scheduling stage (Stage 5) assigns

DataTasks to available worker processes, considering factors such

as the DataTask characteristics, Quality of Service constraints, and

data locality. Finally, executors execute the DataTasks, adapting the

data to the required storage system, and performing I/O operations

(Stage 6). The three key components of DTIO and their interactions

can also be seen in this figure, as DataTask Composition, DataTask

Scheduling, and DataTask Execution.

5.1.1 DTIO API. The DTIO native API can be seen in table 2. It is

composed of a DataTask Creation API that enables creating, editing,

and destroying DataTasks, and a DataTask Introspection API that

allows users to obtain information about the DataTasks in relation

to the system and other DataTasks.

DataTask Creation API: Task construction is performed by

calling createtask() passing a buffer alongside optional dependency,

property list, and context arguments. The scheduletasks() call pushes

Function Input Output
createtask type, content, deps, plist, ctx DataTask

scheduletasks DataTask[] ID[]

wait ID result

requestbuffer size buffer

freebuffer buffer N/A

readbuffer offset, count buffer

writebuffer offset, count, data buffer

taskposition DataTask position

taskperformance DataTask time_to_run

contentsize DataTask size_t

contenttype DataTask type

Table 2: DTIO’s API

Figure 3: DTIO DataTask Composer: application I/O requests
are processed in parallel, undergoing stages of interception,
dependency resolution, DataTask generation, replication
(optional), versioning, and registration in the Task Registry.
Key technologies include DataTasks, Thallium/HCL commu-
nication libraries, and zero-copy networking (RDMA/RDSA).

DataTasks to the scheduler. It gives IDs for the DataTasks that are

being scheduled, and their results can be viewedwith a synchronous

call to wait(). The managed buffers used by the lazy scheduling al-

gorithms also have functions in this API to request and free them,

as well as to read from and write to them.

DataTask IntrospectionAPI: The intent of this API is to enable
analysis of DataTasks as the system runs for various purposes. For

example, taskposition() allows the user to get the current position of

a DataTask, to determine if it has been scheduled or not. The taskper-

formance() call gives the time that it took to run the task, and canonly

be utilized once a task has completed. The contentsize() and content-

type() calls give information about the size of content being stored

in the DataTask and the type of the content (e.g., int, char, string).

5.1.2 DataTask Composition Component. The DataTask Composer

translates the user I/O into DataTasks transparently to the user

application. The DataTask Composer executes in the application

userspace and has been designed to be as lightweight as possible by

minimizing the amount of metadata management performed to the

minimum necessary to ensure correctness to applications.

The DataTask composer consists of several steps, as shown in

figure 3. First, is acquisition, where DTIO gains ownership of the ap-

plication data. Acquisition can be achieved through 𝐿𝐷_𝑃𝑅𝐸𝐿𝑂𝐴𝐷
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Figure4:TheDTIOScheduleruses: (1) System-AwareExecutor
Selection, leveraging real-time telemetry (load, data locality)
to choose the optimal executor; and (2) Pattern-Aware
Scheduling, consulting the task registry for dependency
management and contextual information. These paths
converge to drive the ’Schedule Task’ decision, ensuring both
performance and correctness. The task registry maintains
a persistent record of schedule actions.

interception or through direct use of the DTIO API. When intercept-

ing pre-existing applications, and in order to maintain transparency,

DTIO allows the use of external configuration files to define intents,

sets global defaults for properties, and define dependencies. Once

an I/O request is acquired, DTIO extracts anymetadata possible, and

resolves the dependencies on other operations. Afterward, the I/O

request is translated to theDataTask format. Translation is separated

into generation and operators. Generation executes DTIO logic to

map the data interface to DataTasks. Before DataTasks get sched-

uled, DTIO applies optional operators to transform and annotate

the data, such as replication, versioning, and predictive generation.

These operators canmodify existingDataTasks aswell as create new

ones. Finally, the translatedDataTasks are registered in theDataTask

registry, a distributed hashmap that allows other clients and DTIO

itself access to information about non-local DataTasks.

DTIOcontains translation logic,which consists of small code snip-

pets that define the conversion from an I/O interface to DataTask

and vice versa. For example, DTIO can translate HDF5 dataset writes

or reads to a write or read DataTask and HDF5 files and groups to

SuperTasks.

5.1.3 DataTask Scheduler Component. The DataTask scheduler is
in charge of intelligently mapping DataTasks to the pool of execu-

tors that will execute them. This scheduling is performed based on

requirements of the data defined in the DataTask, and the current

status and characteristics of the executors.

DTIO achieves DataTask scheduling with several steps, as shown

in figure 4. First, tasks are dequeued from the scheduling queue. The

DataTasks are then ordered based on dependencies, so that depen-

dent DataTasks will be scheduled together and executed in-order.

After a DataTask has been scheduled, the DataTask registry gets

updated with that DataTask’s status before sending it to the selected

executor. DataTasks can be specified as either synchronous or asyn-

chronous, with asynchronous DataTasks returning immediately.

Asynchronous mode is the default when using the DataTask API,

while synchronous is the default on interception.

To inform the mapping decision, the scheduler tracks and makes

use of the system status to inform its placements. Its goal is to bal-

ance two factors: First, it aims to balance the compute load across the

executor pool, since DataTasks contain information about their time

complexity, and the DataTask registry is informed when execution

of a DataTask is completed; the scheduler can maintain understand-

ing of the current load of all the executors in the pool, steering new

DataTasks away fromexecutors that are busy. Second, it aims tomax-

imize data locality. A DataTask executor may contain in-memory

data required by the DataTask, either if it has just executed a de-

pendent DataTask, or if it has staged-in some data (another DTIO

policy). In these situations, DTIO allows user to define a “maximum

load threshold” of a executor, under which the scheduler will bypass

all load balancing decisions.

5.1.4 DataTask Execution Component. The DataTask executors are
responsible for translating DataTasks into a desired or required in-

terface for the storage endpoint. Further, by understanding the data

origin and mapping DataTasks to an output interface, executors can

determine any incompatibility between for data representations. As

such, DTIO can offer users the ability to automatically have their I/O

converted to a more efficient interface for the target storage systems

without requiring extensive I/O knowledge or how the mapping is

performed.

First, they receive DataTasks from the scheduler via a queue.

When available, an executor will pop the next DataTask or batch of

DataTasks (DTIO allows a configurable batch size for asynchronous

operations) from the queue. Execution begins by ensuring the avail-

ability of the destination, this is especially importantwhen requiring

access to remote or cloud-based resources. To this end, the DataTask

Executor contains a separate process, the Endpoint Manager, which

uses a heartbeat mechanism to periodically check available storage

either through dedicated calls or performing a minimal (i.e., 1 byte)

read. Finally, the DataTask Executor executes the DataTask, running

all operations needed, and executing the I/Ousing the required client

for its specified interface. Once done, the DataTask Executor will

use the task registry, to find the process that triggered the DataTask,

send a result to it, and update the completion status of the DataTask

on the task registry.

The executors are also responsible for establishing a configura-

tion for the storage interfaces. While some I/O interfaces are simple

and offer limited configurability, it is common for the configuration

of the I/O operations to have significant effects on their executions.

As such, it is imperative that the Task Executor is capable of config-

uring the translated interface. Out of the box, for most interfaces,

DTIO provides the users with 3 pre-defined profile configurations:

space-saving, performance, and balanced. Users can select the pro-

file if using the DTIO API or set one globally on the configuration

(performance by default). Profiles are defined on external files, and

are expandable and user-editable. As an example, in HDF5, one

available option is compression. A performance profile will disable

compression in favor of efficient I/O,while a space-savingprofilewill

configure HDF5 to use gzip with significant compression. Balanced

will use the lzf option, which provides a good balance between space

and performance.

6 Implementation details
6.1 Using DTIO
Figure 5 demonstrates a simple file write and read operation using

the DTIO API. During initialization, a filename and a write buffer
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Figure 5: By representing I/O requests as schedulable
DataTasks, DTIO enables fine-grained control over data
movement, facilitating optimizations such as deferred I/O,
request coalescing, and computational storage.

containing the data to be written are defined. A createtask() call
is then used to create a DataTask representing the write operation.

Crucially, the type parameter is set to𝑊𝑅𝐼𝑇𝐸 (a defined constant

for clarity), and the content parameter encapsulates the filename,

offset, size, and a pointer to the data buffer. This write task is then

scheduled using scheduletasks(), and the wait function is used to
block until the write operation completes. For the read operation,

a buffer is allocated using requestbuffer(). A read DataTask is

created similarly to thewrite task, butwith the type set to𝑅𝐸𝐴𝐷 and

the buffer field of the content parameter pointing to the allocated

read buffer. This read task is scheduled and waited upon. Finally,

readbuffer() retrieves the data from the buffer.

6.2 Considerations
Alleviating I/O interference: The DataTask composer can be con-

figured to limit the total size and time that DataTasks can be kept un-

scheduled on the local ring buffer. If a DataTask has not beenmarked

to schedule within the time limit or if the ring buffer size exceeds

the size limit, DataTasks in the pool will be scheduled. The pool size

limitation can be set to one in order to force immediate scheduling,

but this prevents a number of DTIO’s optimizations. Setting small

and varied limits on each client can help alleviate I/O interference

issues, but is not expected to give a performance benefit on its own.

Asynchronous Intercepted Operations: DTIO supports asyn-

chronous execution of I/O operations, with asynchronous mode as

the default in the DataTask API and available for intercepted I/O.

Synchronous intercepted operations mapped asynchronously can

be volatile, as DTIO returns the requested write size immediately

while scheduling the actual operation. This can lead to discrepancies

if errors or partial writes occur, as the program receives a return

value before completion. The actual result can be inspected with the

DTIO API, but this requires small program changes, To support this

hybrid approach, DTIO has a small, independent library with an API

to acquire the DataTask ID and request its status. In this case, users

have to be careful with reads that may try to access asynchronous

writes before completion. To solve this, DTIO offers mechanisms to

enforce dependencies through a configuration file, ensuring reads

wait for relevant writes.

Asynchronous reads: Asynchronous read operations are also
possible, but DTIO does not implement them for purely intercepted

I/O because they require DTIO to own the read buffer to ensure

consistency. In DTIO’s API, where there is more control, the user

can, in fact, request a DTIO-managed buffer and then read into it, but

all access to that buffer must occur through the DTIO API to ensure

that the data access waits for unresolved DataTasks.

Sessions: Scheduling of DataTasks need not occur immediately,

and can be naturally delayed by the queue. This is the basis forDTIOs

lazy scheduling and accelerated I/O resolution, but can also be used

to implement session logic. A session can be created with an ID,

any process can join this session and generate DataTasks. These

DataTasks are logically aggregated and are only sent together to the

scheduler once every process has exited the session, This allowsfiner

delineation of I/O and compute phases in step-based simulations,

and helps DTIO resolve I/O dependencies in advance.

I/Omapping in Task Executors: Task Executors have a pow-
erful tool to accelerate performance: I/O mapping. However, per-

formance depends heavily on the semantics of the interfaces being

mapped. For example, CSV or json files are slower and take more

space compared to efficient scientific formats such as Parquet or

Feather [6, 32]. This is largelydue to thedifferencebetweencharacter

and binary data reads, and added optimizations such as compression.

MetadataManagement: Sharedmetadatamanagement inDTIO

(e.g. DataTask register) is kept lightweight via HCL, a state-of-the-

art lock-free distributed data structure library. HCL leverages RPC

calls under-the-hood to perform operations on its data structures,

but allows the use of RDMA or RDSA for zero-copy networking

where available and avoids the overhead of RPCs entirely when data

structures are local to the current node.

DataTask size limitation: DTIO has a DataTask size limitation

of roughly 64 MiB introduced by its communication libraries Thal-

lium andHCL. This requires breaking upDataTasks in the rare event

of an operation too large to package; split DataTasks can then be

scheduled and executed together.

7 Evaluations
Implementation:DTIO is an open-source C++ project under the

GPL v3 or later license. The source code is available at https://github.

com/grc-iit/DTIO. DTIO depends on HCL [10] to manage many of

its data structures. HCL runs on top of Thallium [22] from theMochi

framework [27]. The network stack fromMochi includes Thallium,

Mercury [29],Margo [21],Argobots [28], and libfabric [15], aswell as

leveraging Cereal [23] for serialization. These can all be configured

to allow different fabric setups, such as sockets, TCP, or infiniband.

DTIO configuration files are in a simple YAML format [2]. DTIO

also has dependencies for its intercepted and client libraries, such

as HDF5 and io_uring.

Methodology:We evaluated each component of DTIO and their

respective optimizations and features. Due to our target application,

these evaluations focus on showcasing formats such as HDF5 and

NPZ, as well as the general POSIX interface (via IOR) due to its broad

applicability. Section 7.1 demonstrates the performance of aggrega-

tion. Section 7.3 demonstrates the performance of the data staging

optimization that prefetches data to executors in advance of data

being requested. Section 7.2 demonstrates the performance of the

https://github.com/grc-iit/DTIO
https://github.com/grc-iit/DTIO
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(a) Fixed-SizeAggregation inDTIO.Runtimedecreases as aggregation
size increases, with optimal performance near 1MB, aligning with
the PFS stripe size.

(b) Fixed-Time Aggregation in DTIO. Runtime decreases sharply
as the aggregation window increases. The red line indicates the
increasing average aggregation size (KB) with larger windows.

Figure 6: Impact of Aggregation Strategies on DTIO Write
Performance. (a) Fixed-size aggregation shows optimal
performance near a 1MB aggregation size, corresponding to
the PFS stripe size. (b) Fixed-time aggregation demonstrates
optimal performance with a ≈32mswindow. Both strategies
showcase DTIO’s ability to achieve up to a 5x performance
improvement by converting small 4KB writes into larger,
more efficient I/O operations.

caching optimization that resolves I/O from DataTasks. Section 7.4

showcase DTIO’s overhead for different small and large I/O sizes.

Finally, section 7.5 demonstrates the performance of DTIO in an

end-to-end setting on the PtychoNNworkload.

Testing Environment: IOR tests were performed on the multi-

tiered Ares research cluster at the Gnosis Research Center, hosted by

the Illinois Institute of Technology [5]. This cluster has 32 compute

nodes. Each compute node has a dual Intel® Xeon Scalable Silver

4114 processor and 96 GiB of RAM, along with NVMe PCIe ×8 drive
and a SATA SSD. PtychoNN tests were performed on the Polaris

supercomputer at Argonne Leadership Computing Facility [11]. Po-

laris has 560 nodes. Each node has 4 NVIDIA A100 GPUs, 512 GiB

of DDR4 RAM, and 2x 3.2 TB local SSD drives.

7.1 Aggregation Policies Evaluation
In this case, we demonstrate the impact of different aggregation

strategies on I/O performance. To do this, we run a small write-only

I/O workload using fio. In this case, fio writes in units of 4KB from

24 threads and total 8GiB in size. For the fixed-size aggregator, we

vary the amount to aggregate before submitting an I/O request. For

the fixed-time aggregator, we vary the window of time to merge I/O

requests. DTIO is configured with 4 executors for performing I/O. In

(a) IORWrite Performance. Comparison of DTIOwith andwithout
accelerated resolution (“DTIO+Res” vs. “DTIO”) across various
operation sizes. Minimal performance difference is observed, as
expected, since accelerated resolution is a read-focused optimization.
Themaximum overhead of accelerated resolution is 12%.

(b) IORRead Performance (Log Scale). DTIOwith accelerated resolu-
tion (“DTIO+Res”) significantlyoutperformsstandardDTIOacrossall
operation sizes. Performance improvements range from64.4% (8MiB)
to 95.5% (512 KiB), with an average reduction in read time of 89.2%.

Figure 7: Impact of Accelerated Resolution on Write and
Read Performance. (a) Write performance shows minimal
impact from accelerated resolution. (b) Read performance
(log scale) demonstrates substantial gains with accelerated
resolution, achieving up to a 95.5% reduction in read time.

figure 6, it can be seen that aggregation has a substantial impact on

performance. In both cases, about 5x improvement is gained in the

best case. For the fixed-size aggregator, performance peaks around

1MB. For the fixed-time aggregator, performance peaks with a win-

dowof size 32ms,which iswhen the average request size of awindow

is 768KB – almost 1MB. This is because the stripe size of the PFS is

1MB, so the bandwidth becomes saturated. Overall, by allowing I/O

tasks tobeaggregated,DTIOcanconvertunfavorable accesspatterns

into ideal ones and accomplish significantly higher I/O bandwidth.

7.2 Accelerated I/O Resolution Evaluation
As discussed in Section 4.3, DTIO implements an accelerated I/O

resolution optimization, where DataTasks are temporarily stored in

a circular buffer. This allows subsequent DataTasks to retrieve data
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Figure 8: Read Performance with Staging and Prefetching
(Log Scale). Comparison of standardDTIO, DTIOwith staging,
andDTIOwith both staging andprefetching. Staging provides
a significant performance improvement (average 88.6%), with
prefetching adding a further 3.1% gain, resulting in a total
improvement of 91.7% over standard DTIO.

directly frommemory instead of disk. To demonstrate the benefits of

this optimization, IOR is configured to emulate a producer-consumer

workflow that writes and then reads a file of size 1 GiB for various

operation sizes. We compare DTIO with and without accelerated

resolution, which is configured to use 10% of DRAM for storing

unresolved DataTasks.

The write performance is shown in subfigure 7a. Since this is a

read optimization, little performance difference was observed as

expected. Accelerated resolution (res) does not have a significant

overhead in writes -≈12% in the worst case. The read performance is

shown in subfigure 7b. DTIO accelerated I/O resolution achieves a re-

duction in read time by 95.5% at 512 KiB with accelerated resolution

and 64.4% reduction at 8MiB, for an average reduction of 89.2%. This

is because without optimization, data is transferred using PFS over

disk storage rather thanmainmemory,which the accelerated I/O res-

olution enables. By enabling DataTasks to be resolved directly from

other DataTasks stored in local memory, significant performance

improvements can be gained in producer-consumer workloads by

replacing inefficient disk-based transfers with high-performance

memory transfers.

7.3 Data Staging Evaluation
DTIO implements a data policy that allows DataTask Executors

to stage data before read operations arrive for it. When this opti-

mization is active, the Scheduler prioritizes data locality by sending

DataTasks to the executor that has their staged file. In addition to

this policy, DTIO can also attempt to send the staged data to the cir-

cular buffers of the clients asynchronously so that it can be accessed

through the accelerated I/O resolution mechanism. To demonstrate

the benefits of these optimizations, we show the performance of IOR

with DTIO-added data staging optimizations in figure 8. For this

test, IOR is configured to perform 1MiB reads from files of varying

total sizes. The performance is tested with DTIO added, one version

without staging, one version that stages the file into the executors

and another version that preloads data into the circular buffers using

the accelerated I/O resolution mechanism to pull DataTasks that get

automatically populated from staged data.

The performance of the staging optimization shows a significant

improvement over DTIO without staging, with an average improve-

ment of 88.6%. Adding the prefetching optimization to staging im-

proves performance by a further 3.1%, bringing the performance

improvement over standard DTIO to 91.7%. By predictively and

asynchronously loading data before it is accessed, significant perfor-

mance improvements can be gained by avoiding synchronous I/O

stalls. However, the effectiveness of this approach is largely dictated

by memory capacity and the amount of data that needs to be staged.

7.4 Overhead Analysis
For this evaluation,wewanted toexplorewhereDTIOspendsmostof

its time in order to understand potential bottlenecks and overheads

in ordinary scenarios. The overhead is not significant, but it is worth

investigating to understand the life cycle of an average operation in

theDTIO pipeline. Figure 9 shows the overheads of DTIO under read

and write settings. Timers are placed within DTIO to demonstrate

howmuch timeDTIO spends in composition, scheduling, and execu-

tion phases. Most metadata updates are performed during execution,

but the timings for these are separated out for better understanding.

We performed two sets of tests, one of 8 MiB operations as can be

seen in Figure 9a and the other of 256 KiB operations in Figure 9b

with a fixed file size of 1 GiB.

Figure 9a shows that in DTIO, when the I/O operations are larger

and fewer, the Metadata operations and Task Scheduler overheads

shrink by ≈94% and ≈96% respectively when compared to doing

smaller I/O and a larger number of I/O operations which can be seen

in Figure 9b. In the best case, however, the overheads of Metadata

and Task Scheduling are negligible, at roughly 1% of the total time

each. In both cases, DTIO spends most of its time composing and

executing I/Ooperations. For composing, a copyof thedata is created

because DTIO runs in a separate address space from the application.

For execution, this is where the actual I/O occurs. It is notable that if

metadata overhead were to become excessive, DTIO provides batch-

ing functionality to allow executors to wait and perform multiple

I/O operations and their corresponding metadata updates simulta-

neously. This slows down throughput, but it can significantly reduce

metadata overhead.

7.5 End-to-End Evaluations
For the end-to-end evaluations, PtychoNN is run with and without

DTIO interception. The PtychoNNworkflow consists of a producer

which reads in HDF5 data and converts it to Numpy and a consumer

which reads the Numpy data as tensors. The producer and consumer

are run in sequence for the ordinary test, but with DTIO acting as an

intermediary they can be run at the same time (as DTIOwill allow

access to partial results). The total file sizes employed in this test are

multiplesof 3.2GiB, and individual I/Ooperations arekept to roughly

3MiB so that DTIO’s system can be stressed with a larger number of

operations. DTIO utilizes all optimizations to improve performance,

including staging, asynchronicity, and accelerated I/O resolution.
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(a) DTIO Overhead Breakdown (8MiB Operations). Dis-
tribution of time spent within DTIO components for a
1GiBworkload using 8MiB operations. Executors (66%)
and Composer (32%) dominate, withminimal overhead
fromTask Scheduler (1%) andMetadata operations (1%).

(b) DTIO Overhead Breakdown (256 KiB Operations).
Time distribution for a 1 GiB workload using smaller
256 KiB operations. Compared to (a), Task Scheduler
(23%) and Metadata (18%) overheads increase signif-
icantly, while Executors (27%) and Composer (32%)
represent a smaller proportion of the total time.

Figure 9: DTIO Overhead Analysis. Breakdown of time spent
in DTIO components (Composer, Task Scheduler, Executors,
Metadata) for a 1 GiB workload. (a) With large 8 MiB
operations, Executor andComposer time dominates. (b)With
smaller 256 KiB operations, Task Scheduler and Metadata
overheads increase substantially, highlighting the impact of
operation size on DTIO’s internal overhead distribution.

The bandwidth of each part of the I/O pattern of the PtychoNN

workflow with and without DTIO is shown in figure 10. The con-

sumer read in DTIO is very efficient compared to PtychoNNwithout

DTIO, showing an average bandwidth increase of 2516 MiB/s. How-

ever, the producer read and write phases shows better bandwidth

in PtychoNN without DTIO. PtychoNN outperforms DTIO in the

producer read phase by an average of 165.5 MiB/s. This is expected,

as the producer reads are transferring data from the filesystem over

to DTIO, while the consumer reads are able to leverage DTIO’s ac-

celerated I/O resolution. The producer writes also outperform DTIO

in PtychoNN by an average of 221 MiB/s, but only if we force DTIO

to trigger these writes. Since DTIO can use DataTasks to resolve

future reads, storing the intermediate result is not strictly necessary.

DTIO can save storage space by using its own buffers exclusively,

Figure 10: PtychoNN End-to-End Bandwidth Comparison:
DTIO vs. Standard PtychoNN across various file sizes. Band-
width (MB/s) for Producer Read (HDF5 to Numpy), Producer
Write, and Consumer Read (Numpy to tensors) phases. DTIO
significantly improves Consumer Read bandwidth (average
increase of 2516MB/s) due to accelerated I/O resolution. Fur-
thermore, DTIO can eliminate the need for ProducerWrites
altogether, saving storage space and potentially improving
overall workflow efficiency by using in-memory DataTasks.

Figure 11: PtychoNN End-to-End I/O Time: Impact of Elim-
inating ProducerWrites with DTIO. Total I/O time (ms) for
the PtychoNNworkflow, comparing standard PtychoNNwith
DTIO. By avoiding unnecessary producer writes, leveraging
in-memory data transfers DTIO achieves performance
improvements ranging from 38% (for 25.6 GiB data) to 65%
(for 6.4 GiB data), with an average improvement of 49.6%, or
a 21.6-second reduction in I/O time.

and if it does, then the producer writes do not need to be performed.

Figure 11 shows the I/O time to run PtychoNN with and without

DTIO,whereDTIO is optimizing performance by not performing the

producer writes. In this case, DTIO shows a performance improve-

ment over PtychoNN that varies from 38% for large I/O (25.6 GiB) to

65% for smaller workloads (6.4 GiB). The average I/O performance

improvement is 49.6%, or 21.6 seconds of PtychoNN’s I/O time.
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8 Conclusions
In conclusion, this paper has presented DTIO, a scalable I/O runtime

which unifies the disparate data stacks for modern HPC, Big Data,

and ML workflows. DTIO utilizes a unique DataTask structure to

express the movement of data, its ordering, and its dependencies on

other data as a task. DTIO achieves a unification of converged HPC,

BigData, andMLworkflows by utilizing intelligentmapping of inter-

faces, and automatically determines the best method to relate their

unique semantics. It achieves this withminimal overhead of 9% com-

pared to offline translation methods. In addition, DTIO’s accelerated

I/O resolution can provide a performance benefit of 89.2% for reads,

and data staging can provide an average performance improvement

of 88.6% without prefetching and 91.7% with prefetching. Finally,

in an end-to-end evaluation against the PtychoNN data processing

workflow, DTIO achieved an average I/O performance improvement

of 49.6%.

For future work, we plan to expand DTIO across more interfaces

such as netCDF and test it on more hybrid workflows. Further, we

plan to leverage the DataTask abstraction to explore new scheduling

and taskexecution techniques that takeauser-specifiedqualityof ser-

vice into account, considering certain needs such as fault-tolerance

and improved locality.
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