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Abstract—Deep learning has been shown as a successful
method for various tasks, and its popularity results in numerous
open-source deep learning software tools. Deep learning has
been applied to a broad spectrum of scientific domains such
as cosmology, particle physics, computer vision, fusion, and
astrophysics. Scientists have performed a great deal of work
to optimize the computational performance of deep learning
frameworks. However, the same cannot be said for I/O perfor-
mance. As deep learning algorithms rely on big-data volume and
variety to effectively train neural networks accurately, I/O is
a significant bottleneck on large-scale distributed deep learning
training. This study aims to provide a detailed investigation of
the I/O behavior of various scientific deep learning workloads
running on the Theta supercomputer at Argonne Leadership
Computing Facility. In this paper, we present DLIO, a novel
representative benchmark suite built based on the I/O profiling
of the selected workloads. DLIO can be utilized to accurately
emulate the I/O behavior of modern scientific deep learning
applications. Using DLIO, application developers and system
software solution architects can identify potential I/O bottlenecks
in their applications and guide optimizations to boost the I/O
performance leading to lower training times by up to 6.7x.

Index Terms—deep learning; scientific applications; represen-
tative; benchmark; data intensive; I/O; characterization; Tensor-
flow; data pipeline;

I. INTRODUCTION

In the past decade, deep learning (DL) has been applied

to a wide range of applications [1] with tremendous success.

These include image recognition [2], natural language

processing [3], autonomous driving [4], as well as physical

science domains such as cosmology [5], materials science [6],

[7], and biology [8], [9]. Using DL methods in scientific

applications is beneficial in two meaningful ways: a)

accelerate time-to-results by minimizing the simulation cost,

b) extract patterns out of large datasets where heuristics

cannot. DL methods achieve this by iteratively adjust the

weights within the network to minimize a loss function. At

each training step, the application reads a mini-batch of data,

computes the gradient of the loss function, and then updates

the network’s weights using stochastic gradient descent.

Many new AI hardware (e.g., GPU, TPU, Cerebras, etc.) have

been designed and deployed to accelerate the computation

during the training. However, as the size and complexity of

the data sets grow rapidly, DL training becomes increasingly

read-intensive with I/O being a potential bottleneck [10].

On the other hand, more and more studies on scientific

DL application are conducted on supercomputers through a

distributed training framework to reduce the training time-to-

solution [11]. Therefore, characterizing the I/O behavior [12]

of DL workloads in high-performance computing (HPC)

environments is crucial to address any potential bottlenecks in

I/O and to provide useful insights to guide I/O optimizations.

Data is the core of all deep learning methods. As the data

volume explodes, efficient data ingestion and processing be-

comes a significant challenge. To address this, the cloud com-

munity has developed several comprehensive DL frameworks

such as TensorFlow [13], Pytorch [14], and Caffe [15] that

encapsulate methods to tune different data access parameters.

These tuning parameters are tailored to heterogeneous cloud

environments [16], including: different data sources and data

representations (e.g., textual formats or custom data formats

such as TFRecord); mechanisms for adjusting worker assign-

ment to read, process, and feed data into a distributed training

process; and finally, hardware-specific optimizations [17],

(e.g., RDMA, GPU-Direct, NVLink etc.,) to enable efficient

data movement within the application. These optimizations

improve data access significantly in these environments.

Studying the behavior of DL applications allows developers

to fine tune their training pipelines. Benchmarks suites have

traditionally been used to drive insights and reason about the

expected performance of applications. In this study, we high-

light three major hurdles in developing such benchmarks. First,

existing DL benchmarks have been focusing on characterizing

the computational capabilities of DL frameworks [18] but

do not address their data management competency. Second,

this compute-centric thinking has led to a lack of a standard

methodology to quantify the benefits of existing data access

optimizations implemented by DL frameworks for efficient

data ingestion in scientific workflows. Third, I/O research and

optimization [19]–[22] for DL applications in HPC requires

the adoption of mini-applications [23] that encapsulate the

data access and processing characteristics of complex scientific

DL workflows. Hence, the existence of mini-applications will

enable fast prototyping and testing of novel and innovative so-

lutions. Hence, a benchmark suite that can encapsulate the data

access behavior of various scientific DL applications is crucial.

In this work, we present DLIO, an I/O benchmark for scien-

tific DL applications. DLIO aims to accurately characterize the

behavior of scientific DL applications and guide data-centric
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optimizations on modern HPC systems. To build this bench-

mark, we first characterize the behavior of modern scientific

DL applications currently running on production supercom-

puters at Argonne Leadership Computing Facility (ALCF).

Our approach captures a wide variety of application behaviors,

from different scientific domains, informed by several active

projects such as Argonne Data Science Program (ADSP),

Aurora Early Science Program (ESP), and DOE’s Exascale

Computing Project (ECP). In order to acquire a holistic view

of how data is accessed in DL applications, we utilized both

high-level and low-level I/O profiling tools. DLIO incorporates

the observed I/O behavior in these applications and provides

tunable mechanisms to test and adjust different I/O access

optimizations. Our benchmark suite is validated by statistically

comparing the generated I/O behaviors with the applications.

DLIO uses mini-applications to emulate several DL applica-

tion behaviors. Lastly, DLIO provides a highly tunable data-

generation toolkit that can be used to project the behavior of

DL applications at scale. The contributions of this work are:

1) A comprehensive study of the I/O behavior of eight scien-

tific DL applications on a production supercomputer (III).

2) The design and implementation of a modular and flexible

I/O benchmark for scientific DL applications (IV).

3) An illustration of how DLIO can guide software

optimizations to boost application’s I/O performance (V).

II. RELATED WORK

HPC benchmarks for DL have concentrated on measuring

the machine’s computing power. There are several challenges

in the DL domain such as system heterogeneity, the variety of

deep learning workloads, the stochastic nature of approaches,

and the difficulty in designing simple, yet comprehensive,

measurements. Researchers have attempted to highlight these

challenges by incorporating different machines [1], [24] or DL

algorithms [25], [26]. All of these benchmarks focus solely on

capturing the computation aspect of DL workloads on HPC

systems. However, this work aims to capture the I/O behavior

for many scientific DL workloads so as to propel innovations

and designs. Scientists have [27], [28] characterized the I/O

behavior of deep learning application’s I/O performance

over parallel file systems running in HPC infrastructure.

However, those studies were limited to single node and

Imagenet Benchmark evaluations and characterizations. Our

study aims to provide a deeper dive into various scientific DL

applications in HPC and build a representative benchmark

which can further research and development.

DL in cloud environments inspires more and more inter-

ests from both academia and industry; hence, a series of

benchmarks have been proposed. Fathom [25], BenchNN [29],

DeepBench [30], and MLPerf [31] provides multiple deep

learning workloads and models implemented with Tensor-

Flow. DNNMark [32] is GPU benchmark suites that consists

of a collection of deep neural network primitives. All of

these benchmarks target cloud platforms whereas scientific

workloads are typically run on supercomputing platforms.

Additionally, unlike this work, their focus is to express the

computation requirements of DL workloads but not the I/O

requirements. Scientists have proposed I/O frameworks [33],

[34] for training deep neural networks by enabling RDMA-

assisted in-situ shuffling, input pipelining and entropy-aware

opportunistic ordering. These frameworks are benchmarked

against the TensorFlow dataset API, and a portable API for

TensorFlow is developed to leverage DeepIO on different

storage systems. However, our work focuses on characterizing

and optimizing existing TensorFlow applications by building a

representative benchmark targeting scientific DL applications.

III. METHODOLOGY

In this section, we aim to understand the I/O behavior in

scientific DL applications. We explore a collection of scientific

deep learning workloads currently running at the Argonne

Leadership Computing Facility (ALCF). These workloads are

selected from various projects, such as Argonne Data Science

Program (ADSP), Aurora Early Science Program (ESP), and

Exascale Computing Projects (ECP). The science domains

represented by the workloads include physics [5], [35], cos-

mology [36], materials science [6], and biology [8], [9]. Many

of the workloads are in active development targeting upcoming

exascale supercomputers. One of the long term goals for

this study is to identify any existing I/O bottlenecks in these

workloads on current production machines and suggest I/O

optimizations for current applications and provide a road map

for future systems. We profile the I/O behavior of eight DL

applications on Theta, the current production leadership-class

supercomputer at ALCF. We utilize the profilers provided by

the DL framework, such as the TensorFlow profiler as well

as low-level I/O profiler such as Darshan, to study the I/O

behavior of applications. These profilers are accompanied

with analysis tools. However, to get a holistic view of the

application, we developed our own Python-based analysis tool,

VaniDL [37], for post-processing the information obtained

from profiling tools and generating high level I/O summary.

A. I/O behavior of scientific Deep learning applications

Hardware: We run the applications on Theta [38]. Theta

consists of 4392 compute nodes and 864 Aries routers

interconnected with a dragonfly network. Each router hosts

four compute nodes, each contains 64 2nd generation Intel

Xeon PhiTM processors, code name Knights Landing (KNL).

Each node is equipped with 192 GB of DDR4 and 16 GB

of MCDRAM. In all the studies presented here, we set two

hyper-threads per core for a total of 128 threads per node, and

four MPI processes per node. The datasets are stored in the

HDD-based Lustre file system of size 10 PB with 56 OSTs. We

set the Lustre stripe size to be 1 MB and stripe count to be 48.

The peak read performance the Lustre filesystem is 240 GB/s.

Applications: We target distributed DL workloads. These

include Neutrino and Cosmic Tagging with UNet [5],

Distributed Flood Filling Networks (FFN) for shape

recognition in brain tissue [6], Deep Learning Climate

Segmentation [39], CosmoFlow for learning universe

at scale [36], Cancer Distributed Learning Environment
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(b) Distribution of Transfer sizes.

(c) Compute and I/O timeline.

Fig. 1. I/O behavior of Cosmic Tagger: Figure a) shows the application
achieved an aggregate bandwidth of 11 MB/s. Figure b) shows that most
requests were made between 2 KB and 6 KB due to the small chunk size set
in the dataset. Figure c) shows 10% of the I/O is hidden behind the compute.

(CANDLE) for cancer research [8], Fusion Recurrent Neural

Net for representation learning in plasma science [9], Learning

To Hamiltonian Monte Carlo (L2HMC) [35], and TensorFlow

CNN Benchmarks [40]. These applications are implemented

in TensorFlow and use Horovod for data parallel training.

Tools: We use Darshan (with extended tracing) as our low-

level I/O profiling tool along with the TensorFlow profiler.

Additionally, we process the profiling results using our custom

analytic tool, VaniDL [41] to integrate the low-level Darshan

logs with high-level TensorFlow profiler logs and generate a

holistic I/O information of the application, such as I/O access

pattern, transfer size distributions for all the I/O operations,

I/O access timeline, etc. All the results described below are

the outcome of the analysis produced by VaniDL. In order

to see how much overlap there is between compute and I/O,

we align the I/O timeline generated from Darshan profiling

results and the TensorFlow timeline. We use anchors (e.g.,

timestamp to a file) placed within code to align the timelines.

1) Neutrino and Cosmic Tagging with UNet [5]: Cosmic

Tagger is a convolutional network for separating cosmic

pixels, background pixels, and neutrino pixels in a neutrino

dataset. In our benchmark, the application reads 33 GB of the

dataset stored in HDF5 format using the larcv3 [42] library.

The dataset contains 43000 samples, each of which contains

three images of size 1280×2048. The samples are stored in

an HDF5 dataset as sparse data of average size 40 KB with

a standard deviation of 10 KB. The application is run for 150

steps on a single epoch. At each step, each process reads 32

images and perform pre-processing with twelve initial filters.

Figure 1 shows the I/O profile of the application’s behavior.

The application spent 227 seconds on I/O, which is 22% of
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(b) Distribution of Transfer sizes.

(c) Compute and I/O timeline.

Fig. 2. I/O behavior of DFFN: Figure a) shows the equal distribution of I/O
between ranks of the application and a bandwidth per rank of 22 MB/s. Figure
b) shows that small accesses (i.e., 100 Bytes) are from the metadata file and
large accesses (i.e., 64 KB) are from the data file. Figure c) showcases the
distinct I/O and computation phases.

the overall time. It reads the whole dataset sequentially with

an average aggregate bandwidth of 11 MB/s. The HDF5 file is

opened at the beginning of the training, which triggers Lustre’s

prefetching at the beginning of the file. This results in the

initial high bandwidth seen in Figure 1(a). After this, each pro-

cess continues reading data for each step of the training with an

average bandwidth of 4 MB/s. This relatively low bandwidth

observed can be explained by the transfer-size distribution of

the application. The HDF5 file is chunked with 2 KB chunk

size. This chunking creates a small I/O unit (2KB and 6KB on

the figure) on the parallel file system which, as known by pre-

vious studies [43], resulting in a sub-optimal performance. Fi-

nally, Figure 1(c) shows the compute and I/O timeline obtained

by merging Darshan tracing with TensorFlow profiler tracing.

It is found that the application uses a single thread for I/O and

multiple threads for computation. At each step, the I/O occurs

before the computation starts. Part of the I/O overlaps with the

compute. Out of 227 seconds of I/O, 23 seconds was hidden

behind compute. This accounts for 10% of the overall I/O time.

2) Distributed Flood Filling Networks (DFFN) [6]: DFFN

is a recurrent 3D convolutional network for segmenting com-

plex and large shapes of neurons from a brain tissue’s raw

image. In our benchmark, the application reads a dataset of

2.28 GB from a HDF5 file. The I/O is performed using the

h5py python library. The data is stored in two files: one

contains real data and the other contains metadata associated

with the dataset (e.g., size of samples, location of samples

within the dataset, etc.). The training dataset consists of 18678

samples, each of size 32×32×32. The samples are read by the

application with 4096 fields of view. The application runs for

400 steps in one epoch. At each step, each process reads a

batch of 32 images.

Figure 2 shows the behavior of the DFFN application. Every

process in the application reads the 1/3rd of the dataset (i.e.,

overall I/O of 363 GB) randomly in 67.858 seconds (i.e.,

18 % of the overall time). The dataset was read by the
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Fig. 3. I/O Behavior of CosmoFlow: Figure a) shows that the application
achieves a bandwidth of 36 GB/s. Figure b) shows the average bandwidth
achieved per rank within the application is 750 MB/s. Figure c) shows that
I/O and compute completely overlap within the application.

application (512 ranks) with an aggregate bandwidth of 11

GB/s [Figure 2(a)]. The application reads this dataset with

the distribution of the transfer size centers at two places

[Figure 2(b)], one at about 64 KB (for reading images), the

other at about 100B (for reading metadata). A chunk size of

64KB is used in the data file. That is why the transfer size

for reading images is about 64 KB. This dataset is accessed

randomly due to shuffling and then a batch of images is read.

Finally, Figure 2(c), shows the merged timeline of compute

and I/O within the application. In this case, we do not see

overlap between I/O and compute.

3) Cosmoflow Benchmark [36]: CosmoFlow is a 3D con-

volutional neural network model for studying the features

in the distribution of dark matter. The application reads a

dataset of size 2 TB, which consists of 1024 TFRecord files.

The dataset is accessed using TensorFlow’s tf.data APIs.

Each TFRecord file consists of 262,144 samples, each of size

128×128×128×4. The application runs for four epochs with

256000 steps. The batch size is one. That is, each process

reads one image from the dataset at each step.

Figure 3 shows the behavior of the CosmoFlow application.

The application ran for 431 seconds, out of which 12% (i.e.,

51 seconds) was spent on I/O. During the whole benchmark,

the application read 8 TB of data with a bandwidth of

36 GB/s [Figure 3(a)]. Each process of the distributed

TensorFlow training reads eight files completely with a

bandwidth of 756 MB/s [Figure 3(b)]. The transfer size for

each request is 256 KB, which is the default in TFDataset

APIs. Figure 3(c) shows the merged timeline of I/O and

compute within CosmoFlow. This request size on Lustre (with

stripe size of 1 MB), results in higher bandwidth for next

consecutive calls with higher bandwidth. Initially, as there is
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Fig. 4. I/O Behavior of CANDLE: Figure a) shows the aggregate bandwidth
achieved of 8 GB/s for the applications. Figure b) depicts the distribution of
I/O (i.e., 700 MB) and the achieved bandwidth (28 MB/s) across ranks. Figure
c) shows the merged timeline of I/O and compute, which shows that I/O and
compute do not overlap in the application.

no model computation, TensorFlow data pipeline performs I/O

frequently. Once the model computation starts, the count of

requests per second reduces. This results in a lower aggregate

bandwidth as shown in the figure. The application uses eight

threads per process for computation (only two are shown in

the figure) and four threads for the I/O data pipeline. The I/O

data pipeline consists of two parts: I/O and data preprocessing.

Figure 3(c) shows the data pipeline takes 23% of the overall

time and preprocessing takes 11% of the time. Finally, the

application completely overlaps its I/O with compute.

4) Cancer Distributed Learning Environment

(CANDLE) [8]: CANDLE is a 1D convolutional network

for classifying RNA-seq gene expression profiles into normal

or tumor tissue categories. The application reads 700 MB

dataset stored in CSV format using the Pandas framework.

The dataset is divided into train and test dataset with a total

of 1120 records. Each record contains 65536 columns of

32 bit floating-point numbers. The application run over 60

epochs with a batch size of 20 records.

Figure 4 shows the I/O behavior of the application. The

application ran for 290 seconds, out of which 36% was spent

on reading the test and train dataset. Each process reads

the whole dataset in-memory row-by-row from the CSV file

with an aggregate bandwidth of 8 GB/s [Figure 4(a)]. The

application reads the entire training dataset to the memory at

once and then performs training. This is possible as the size of

the dataset size is 700 MB; hence, it can fit easily into memory.

As the dataset grows, the current pandas CSV load would fail,

and the application would have to do out of core training.

Each process reads the whole dataset with a bandwidth of

28 MB/s [Figure 4(b)] with a transfer size of 256 KB (size

of each row). Figure 4(c) shows the merged timeline of I/O

and compute for the whole application. We can observe that

the application uses eight computation threads (6 shown here)
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Fig. 5. I/O behavior of FRNN: Figure a) shows the aggregate bandwidth of 28
GB/s. Figure b) shows that distribution of transfer size is highly concentrated
near small accesses on metadata files and large accesses near data files. Finally,
Figure c) shows the lack of overlap between computation and I/O.

with one thread for performing I/O, with no overlap between

the computation and I/O.

5) Fusion Recurrent Neural Net (FRNN) [9]: FRNN is

a deep learning model for disruption prediction in tokamak

fusion plasmas. It accesses data in the Numpy array (NPZ)

format using Numpy APIs. The total size of the dataset is 6

GB, which is divided into 2800 signal files. Each file is 2 MB

in size and contains 1024 samples, each of size 2 KB. The

application uses 1M samples with 100 estimates in a random

forest model with a maximum depth of 3. It uses an RBF

kernel with three hidden layers and a learning rate of 0.1. Each

training step is fed with a batch of 1024 samples per-rank.

Figure 5 shows the I/O behavior of the application. The

application runs for 436 seconds, out of which 23% of the

time is spent on I/O. Every process reads the dataset for

28 GB across the application with a bandwidth of 28 GB/s.

The data is read from the signal files before each training

step is executed [Figure 5(a)]. The application makes many

requests on the signal shots file, which is the metadata of the

signal files. Hence, we observe in Figure 5(b) many small I/O

accesses. The large accesses in the Figure (around 4 MB) are

from the data files. The Figure 5(c) shows the merged timeline

of I/O and computation. It can be observed, the application

uses eight threads for computation (one shown here), and

multiple threads are used within the app for I/O. Additionally,

the data is read before each step of the training, and there is

no overlap between computation and I/O.

6) Imagenet Benchmark [40]: It is an image classification

benchmark which contains implementations of several popular

convolutional models such as resnet50, inception3, vgg16, and

alexnet. It accesses a dataset of images in the TFRecord for-

mat. The dataset consists of 1024 files with each file containing
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Fig. 6. I/O behavior of Imagenet: Figure a) shows the aggregate bandwidth
of 32 GB/s achieved by the application. Figure b) shows the distribution of
accesses per file made by the TensorFlow data pipeline. Finally, Figure c)
shows the complete overlap of I/O and computation.

1024 sample images of size 256 KB. The images are serialized

using protocol buffers. The application feeds images with a

batch size of 32. The alexnet model is trained with 100 steps.

Figure 6 shows the I/O behavior of the Imagenet application.

The application has a total runtime of 2757 seconds, out of

which 15% was spent on performing I/O. The application

reads the whole dataset with a bandwidth of 32 GB/s 6(a).

The files are read on-demand during the training, and hence

the samples per file access are not uniformly distributed

among the files 6(b). The files are selected at random but

are accessed sequentially. The data transfer size of the request

is 256 KB, which is the default for TFDataset APIs. Similar

to CosmoFlow, this application also has a higher aggregated

bandwidth initially, and then request per second reduces once

the model computation starts. Figure 6(c) shows the merged

timeline of I/O and computation within the application. The

application uses four threads for compute and two threads for

data pipeline (i.e., I/O plus preprocessing). The overall data

pipeline takes 28% of the overall time of the application. As

can be observed, the I/O is completely overlapped with the

compute of TensorFlow training.

7) Deep Learning Climate Segmentation Benchmark [39]:

The Climate Segment benchmark is based on the Exascale

Deep Learning project for Climate Analytics, which com-

prises multiple deep learning models for different climate data

projects such as AR detection, Storm tracking, and Semantic

segmentation. The application generates its training dataset in

memory based on a stats file. At the end of the training, it

creates a JSON file that contains the summary of the model

and its tuned hyper-parameters. The application runs for one

epoch with 1200 steps and a batch size of one sample. We

observe that the application does not perform much I/O. It

initially reads a 4 KB HDF5 file over 50 operations of 500

bytes in size. Then the benchmark shows training and, each
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rank writes the model parameters to a 4 MB JSON file. The

stat file is read randomly during the application’s lifetime.

8) L2HMC Algorithm with Neural Network [35]: This

application uses the Learning To Hamiltonian Monte Carlo

(L2HMC) algorithm to generate gauge configurations for

LatticeQCD. L2HMC provides a statistically exact sampler

that can quickly converge to the target distribution (fast burn-

in), produce uncorrelated samples (fast mixing), efficiently mix

between energy levels, and is capable of traversing low-density

zones to mix between modes (often difficult for generic HMC).

The application generates data synthetically and performs the

training. During training, it performs checkpointing of the

model for restart purposes. The checkpoint files are written

in TensorFlow using STDIO, which uses a single operation

to write the files. The application runs over 150 steps with

a batch size of 32 records per training step. It checkpoints

the model data in every 50 steps. As the application generates

data synthetically in memory, the only I/O within the app is

during the checkpoint. The checkpoint data is written with

STDIO interface. The checkpoint writes four files of several

megabytes in size. The write time is less than 1% of the total

execution time. This checkpointing is performed by the root

process of the distributed TensorFlow training.

IV. DEEP LEARNING I/O BENCHMARK

The DLIO benchmark [44] is aimed at emulating

the behavior of scientific deep learning applications. The

benchmark is delivered as an executable that can be configured

for various I/O patterns. It uses a modular design to incorporate

more data formats, datasets, and configuration parameters. It

emulates modern scientific deep learning applications using

Benchmark Runner, Data Generator, Format Handler, and I/O

Profiler modules. These modules utilize state-of-the-art design

patterns to build a transparent and extensible framework. The

DLIO benchmark has been designed with the following goals.

1) Accurate: DLIO should be an accurate representation of

selected scientific deep learning applications. It should

incorporate all the I/O behavior seen in various config-

urations of applications. Additionally, It should act as a

mini-application that can precisely mimic the I/O behavior

of scientific deep learning applications.

2) Configurable: DLIO should be easily configurable for

different scenarios required by the user. These include

features such as the ratio-of-computation to I/O, available

threads for I/O, data operators (e.g., decoding, shuffling,

and batching), and mechanism to feed data into training.

3) Extensible: DLIO benchmark should allow adding

custom data directories and enable easy extensions to the

benchmark to incorporate different data formats or data

generation algorithms. These changes should not affect

the basic benchmark operations.

A. Architecture

Figure 7 shows the high-level design of the DLIO

benchmark. The user runs the benchmark executable with

command-line arguments (i.e., different I/O configurations).

DLIO Benchmark
Format Handler

Write Read

Data 
Generator

Benchmark
Runner

Configuration 
Manager

Initialize

Configure

Generate

Run
I/O 

Profiler

Start

Stop

Argument
Parser

Extract

Initialize

Finalize

1. User {configurations}

2. Extracted 
{configurations}

3.

4. Run 
Benchmark 5. Optional

6.
7. Start benchmark

8. Stop benchmark
9.

usesuses

Fig. 7. DLIO high-level design

The arguments are parsed and extracted into configurations

for the benchmark. The extracted configurations are passed

to the Configuration Manager, which is first initialized with

default benchmark values and then updates itself with the

incoming configurations. At this stage, incompatible/incorrect

configurations would be thrown as error back to the users.

Once the configurations are validated and applied, the

benchmark runner is invoked. The runner initializes prepared

data (if needed) and then starts the profiling session. Once

the session has started successfully, the benchmark Run() is

invoked, which runs the benchmark. In the run phase, we run

the benchmark for e epochs. During each epoch, the whole

data is read once using n steps. During an epoch, checkpoint

operations are performed every c steps as well. Additionally,

an inter-step computation is performed to emulate computation

and I/O phases by deep learning application. Finally, once

the benchmark run finishes, the finalize is called, which stops

the profiler, saves its results, and exits the benchmark.

B. Benchmark Configurations

The benchmark configurations are motivated by the I/O be-

havior observed in Section III. We describe the configurations

present in the benchmark below:

1) Interface: The benchmark supports popular data format

interfaces that were observed in various scientific deep

learning applications. These interfaces include TensorFlow

data format (i.e., TFRecord), hierarchical data format

(i.e., HDF5), textual data format (i.e., CSV), and finally,

scientific array format (i.e., NPZ). These data formats

are accompanied by their own I/O interface to load and

access the data. This is designed using the Format Handler

component in the design.

2) File Access Pattern: Among the deep learning applica-

tions, files are accessed using an independent I/O interface

(i.e., POSIX) or using collective I/O interfaces (i.e., MPI-

IO). Independent I/O can be further classified into multiple

processes reading multiple files or multiples processes

reading a single shared file. These two patterns depend on

how the dataset is generated and partitioned for the training
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process. For collective I/O, we utilize coordinated data

access using MPI-I/O collective calls across processes.

3) Data Access Pattern: In most cases of scientific deep

learning applications, data is read sequentially and con-

secutively from the dataset. In certain cases, each process

might perform data shuffling where the process would first

jump to a monotonically increasing random offset and

then read a batch of records. These two data access pattern

encompasses the behaviors of all observed DL applications.

4) I/O Types: There are primarily two I/O behaviors within

scientific deep learning applications. First, the data is

read before training. Second, for every c steps, the model

checkpoint is written in the filesystem. The latter is a

straightforward process where five files (two 1KB, one

4KB, one 64KB, and one 4MB file) are written. The

former includes either reading the complete dataset into

memory or partially on-the-fly. Since this data access

is achieved based on the data format used, the Format

Handler APIs enable this feature.

5) Transfer Buffer: The transfer buffer size is the unit

in which I/O is performed within the application. For

TFRecord, the transfer buffer size is set during the

TensorFlow API call, which is defaulted to 256 KB.

For other data formats, this variable depends on the

record-size×batch-size.

C. Implementation Details

The DLIO benchmark is implemented in python (version

3.6). The extensible parts of the benchmark, such as

Configuration Manager and Format Handler, utilize factory

patterns to enable simple interfaces that can be implemented

to extend the benchmark functionality. The implementation of

DLIO uses existing I/O interfaces of various data formats such

as TFRecord, HDF5, CSV, and NPZ. Additionally, we include

profiler packages such as Darshan and TensorFlow profiler

to enable profiling within the benchmark. The computations

within the benchmark are emulated using busy waiting loops,

to emulate the overlap of computation and I/O accurately.

V. EVALUATIONS

A. Methodology

Testbed: We ran the scientific deep learning applications on

the Theta supercomputer [38]. We run the TensorFlow frame-

work on CPUs with two hyper threads available for a total of

128 threads per node. The datasets are stored in the Lustre file

system with stripe size of 1 MB and stripe count of 48. The

peak read performance the Lustre filesystem is 240 GB/s.

Software Used: We use Darshan (with extended tracing) and

TensorFlow profiler to measure the I/O performance of the

benchmark. Additionally, we use the VaniDL analyzer tool.

We use TensorFlow 2.2.0 with Horovod 0.19.5 for distributed

training. Additionally, we use NumPy version 1.19.1, h5py

version 2.10.0, and mpi4py version 3.0.3.

Application I/O time
 Difference

# files
 Difference

Sequential
Access

 Difference

Consecutive
Access

 Difference

Transfer Size  Difference Bandwidth Difference Overall
SimilarityMedian Average Median Average

Imagenet 0.18 0.07 -0.01 -0.01 0.00 0.00 -0.65 -0.53 0.96
Cosmic Tagger -0.05 0.00 0.15 0.13 -0.38 0.31 0.32 0.42 0.97
Cosmoflow -0.10 -0.34 0.37 0.27 0.00 0.71 0.00 0.26 0.95
FFN -0.07 0.00 0.03 0.09 -0.29 -0.40 0.00 -0.10 0.94
CANDEL -0.19 0.00 -0.06 -0.06 0.00 -0.40 -0.07 -0.68 0.97
FRNN -0.15 0.02 -0.13 -0.13 -0.37 -0.02 0.03 -0.08 0.94

Fig. 8. DLIO Similarity with Real Applications: shows a cosine similarity.
The factors (normalized) used for similarity are overall I/O time (in seconds),
data read (in bytes), transfer size distribution, achieved bandwidth per oper-
ation (in MB/s), percentage of sequential and consecutive accesses, and the
number of files read. The figure shows a correlation of 94% for all apps.

B. Benchmark Verification

In this section, we test if our designed benchmark can

represent the real application’s I/O behavior. To achieve

this, we run our benchmark with a workload similar to

their application counterpart (as observed in Section III) and

calculate the similarity between the two runs (i.e., DLIO

benchmark and real application). To calculate the similarity,

we use the cosine similarity metric S =
Ā·B̄

||Ā||||B̄||
, where

Āi =
Ai

max(Ai,Bi)
, B̄i =

Bi

max(Ai,Bi)
. The parameters for

calculating similarity include overall I/O time (in seconds),

amount of data written (in bytes), transfer size distribution

(such as min, max, mean, and median), achieved bandwidth

per operation (in MB/s), percentage of sequential and consec-

utive accesses, and the number of files read. For each of the

metric, we normalize the data using max for each parameter.

We run the similarity test on a 128-node configuration and

calculate the above metrics across all the processes.

Figure 8 shows the results. We see the DLIO benchmark,

in all cases, achieves over 90% similarity in I/O behavior.

The difference is given by Baseline−DLIO
max(Baseline,DLIO) . This

similarity validates that the DLIO benchmark is an accurate

representation of the real applications. The loss of 3-6%

similarity is because all applications have a distribution of

transfer request sizes, which is represented as a median

request size within the benchmark.

C. Optimizations using DLIO Benchmark

In the last sub-section, we showcased how the DLIO can

accurately represent the real application’s I/O behavior. We

can use this to exhaustively test optimizations on the DLIO

benchmark, which can be later transferred to the real applica-

tion. Based on the underlying configuration of the application,

we identify several opportunities for optimization within the

workload. We explore the values for each optimization to

understand their quantitative effect on the workload. We run

the optimizations test on an eight-node configuration and

calculate the metrics across all the processes.

1) TFRecord Workloads: Imagenet and Cosmoflow

benchmark utilize tf.data APIs to read TFRecord data from

the file system. The TensorFlow data pipeline provides three

optimizations to improve the performance of the data pipeline,

namely: a) Transfer Buffer Size: the granularity of I/O (in

bytes) to be performed on each request. b) Read Parallelism:

the number of threads per process to be used to perform a
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Fig. 9. Imagenet Optimizations: shows the impact of changing transfer size, read threads, and preprocessing parallelism on the Imagenet Benchmark.
Configurations: Each image is 256 KB in size with a batch size of 512 images. Figure a) showcases the optimal bandwidth of 2 GB per sec at a transfer size
of 1 MB (aligned to Lustre stripe size). Figures b) and c) show a read and preprocessing parallelism is best at eight threads.
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Fig. 10. Cosmoflow Optimizations: shows the impact of changing transfer size, read threads, and preprocessing parallelism on the Cosmoflow Benchmark.
Configurations: Each image is 128 KB in size with a batch size of 512 images. Figure a) showcases the optimal bandwidth of 1.8 GB/s at a transfer size of
1 MB (aligned to Lustre stripe size). Figures b) and c) show a read and preprocessing parallelism is best at eight threads.
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Fig. 11. Neutrino and Cosmic Tagging with UNet Optimizations: Configura-
tion: Each image is 50 KB in size with a batch size of 32 images. Figure a),
we see an increase in I/O bandwidth at 64 KB chunk size. Figure b), we see
the performance is best with gzip at compression level 4. Figure c) shows on
a single node that increasing chunk size for large dataset which cannot fit in
memory degrades performance after ideal chunk size.

parallel reading. Finally, c) Preprocessing Parallelism: the

number of threads per process to utilize for parallelizing

data operations such as decoding and transformations. Note,

in real-applications the model computations might utilize

certain number of threads. We should set the I/O threads

while considering exiting computation threads. We run the

DLIO configurations of Imagenet and Cosmoflow with each

of these parameters, calculate the overall time (in seconds),

and bandwidth achieved per operation. We present the results

in Figures 9 and 10, where the x-axis represents the values of

the metric tested, the y-axis shows time elapsed in seconds,

and the y2-axis shows the bandwidth achieved in MB/s.

In Figures 9(a) and 10(a), we observe the achieved band-

width increases as we increase the the data transfer size. This

bandwidth increase is because the Lustre file system can serve

bigger requests with higher bandwidth than multiple smaller

requests. This behavior can be seen for both the applications

where 1 MB of transfer size achieves the best bandwidth of

around 2 GB/s for both applications, resulting in the lowest

I/O times. This results into a performance improvement of

1.25x and 1.32x for Imagenet and Cosmoflow over the default

value of 256 KB which is set within TensorFlow Data Pipeline.

However, we observe that the improvement trends vary slightly

of the two applications where Imagenet has a much steeper rise

and fall than Cosmoflow. This is because the record size and

batch size match the 1 MB transfer buffer size precisely for

Imagenet as opposed to Cosmoflow, where it’s a multiple of

several Megabytes. The transfer size should be set to be a mul-

tiple of record-size, batch-size, and the Lustre stripe unit. This

will enable the applications to get a batch of images through

one or more stripes and enable efficient reading from the PFS.

In sub-figures 9(b) and 10(b), we see that as we increase

the number of threads for reading files per process, the time

taken to read decreases and then starts increasing again. This

is because increasing the number of reading threads initially

increases parallelism but later introduces metadata interference

on the Lustre filesystem, which starts hurting the performance.

In both cases, we see read parallelism of 8 threads gives

the ideal read performance of 2 GB/s read bandwidth. This

would result in a performance improvement of 1.2x for both

applications over the default value of one thread.

In sub-figures 9(c) and 10(c), we see that as we increase the

number of threads to parallelize data preprocessing, the time

taken by the application decreases. After a point in both appli-

cations (specifically eight threads), the read time becomes con-

stant. This is because, at eight threads per process, the prepro-

cessing task is parallelized and is fast enough for an efficient

data pipeline. This results in a performance gain of 66% and

4% in Imagenet and Cosmoflow over default value of 1 thread.

2) HDF5 Workloads: The Neutrino and Cosmic Tagging

with UNet and Distributed Flood Filling Networks applications

utilize the HDF5 interface to perform I/O. This data format
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Fig. 12. Distributed Flood Filling Networks Optimizations: Configuration:
Each image is 32 KB in size with a batch size of one image. Figure a), we
see an increase in I/O bandwidth for 128 KB chunk size. Figure b), we see
the best performance achieved with gzip at compression level 4.

represents a collection of images stored within the dataset of

an HDF5 file. The HDF5 file natively supports two data access

optimizations: a) Dataset Chunking: where a dataset is divided

into fixed-sized chunks and I/O is performed on the chunk

granularity from the file system, and b) Data Compression: the

HDF5 library supports several data compression libraries with

different compression levels such as GZip, and LZF. We run

the DLIO benchmark with different parameters of these two

optimizations and showcase the results in Figure 11 and 12. In

these figures, the x-axis shows the various configurations of the

two optimizations tested, the y-axis shows the time elapsed in

seconds, and y2-axis shows the bandwidth achieved in MB/s.

In Figure 11(a) and 12(a), we observe that as we increase

the chunk size, the I/O time reduces, after which it becomes

constant. For both the applications, we see a steep increase in

bandwidth at 64 KB and 32 KB for Cosmic Tagger and FFN,

respectively. This is due to the alignment of record length

of image and batch size with the chunk size and the stripe

size of the Lustre file system. A chunk size of the application

should be set equal to the size of the image/record times the

batch size. This will enable an efficient reading pattern within

the application. Additionally, the Lustre stripe size should

be a multiple of the chunk size, to enable aligned I/O and

efficient locality caching. This ideal chunk size boosts both

applications’ performance by almost 96x. Finally Figure 11(c)

shows that increasing chunk size for small datasets does not

degrade the performance even when shuffling is enabled. This

is because the dataset can fit in compute nodes memory.

However, for shuffling of samples with large datasets (i.e.,

datasets that cannot fit in the memory of a compute node)

we see a degradation in I/O performance (i.e., performance

reduction of 6.7x for 4 MB) after 64 KB chunk size.

In Figure 11(b) and 12(b), we observe that applying

compression, in most cases, reduces the overall time elapsed

as it reduces the amount of I/O that is performed. However,

there is a trade-off between how much compression is applied

in both applications and the reduction of I/O. As we can

see, a compression level of 4 and 5 achieve the lowest time

elapsed for the two applications. This results in a performance

gain of 1.35x over no compression for both the applications.

If we choose a heavier compression ratio, the decompression

time outweighs the benefit gained by reducing I/O, resulting
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Fig. 13. Applying Optimization: We apply the optimization explored from
benchmark to actual application. Both applications show a similar effect as the
benchmark. Figure a) shows Cosmoflow with a speedup of 1.33x for transfer
size of 1 MB, 12% for using 8 read threads, and 8% for 8 preprocessing
threads. Figure b) shows Cosmic Tagger with a speedup of 8x by changing
chunk size to 1 MB and a speedup of 1.35x for utilizing gzip level 4.

in worse performance than not compressing or lightly

compressing. In general, the effectiveness of data compression

depends on the distribution of data within the dataset [45],

[46] which has to be fine-tuned for each application.

D. Real Application Optimization

On exploring optimizations with DLIO for various

applications, We showcase two examples of applying them

back to the real application. We choose CosmoFlow as a

representative of the TensorFlow Data Pipeline workload and

Cosmic Tagger as a representative of the HDF5 workload.

We apply the optimizations we explored for both applications

directly and observe its impact on I/O performance.

Specifically, we apply CosmoFlow with optimization of

transfer size of 1 MB (aligned to the Lustre’s stripe size) and

select read threads and preprocessing to be eight threads. For

Cosmic Tagger, we re-align the dataset with a new chunk size

of 1 MB and apply the GZip compression of level 4. These

values are derived directly from the previous section.

Figure 13 shows the results. The results of the optimization

for both applications are similar to the results in the DLIO

benchmark. For Cosmoflow, we observe that the transfer size

of 1 MB optimizes the I/O time by 1.33x, whereas adding

additional read threads and computation threads improve data

access by 12% and 7%, respectively. Similarly, for Cosmic

Tagger re-aligning the chunk size from 4KB to 1MB gives a

speedup of 8x over the I/O access. Additionally, utilizing gzip

with compression level 4 can optimize I/O access by 1.35x

(consistent with the DLIO benchmark optimizations). These

results show the ability of DLIO to accurately represent

the scientific DL workloads and a cheap mechanism to test

optimization, which can be later transferred to the applications.

E. DLIO Benchmark Scaling

This sub-section uses the ideal configuration parameters (in-

cluding the optimizations) from the previous section and scales

our benchmark code from 128 nodes to 2048 nodes. We use

four processes per node. Hence, we scale our processes from

512 to 8096 processes. In each of the cases, we measure the

overall time elapsed in seconds. We can categorize the six ap-

plications into one file per process and a single shared file case.
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(c) FRNN

Fig. 14. Multiple File applications: We perform strong scaling of applications,
we observe in all the sub-figures that, applications divide the data and files
equally among the processes and scale linearly in performance.
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(c) CANDEL

Fig. 15. Shared File applications: We perform strong scaling of application,
we observe in all figures that the applications divide the data and hence
the performance is improved. However, the performance is limited by the
contention on metadata due uncoordinated data access.

1) One File Per Process: In this category, we have

Imagenet Benchmark, Cosmoflow Benchmark, and Fusion

Recurrent Neural Net application. In each of these cases,

we keep the overall data the same and scale the number of

processes (i.e., strong scaling). In each of these applications

the files are divided equally among the methods. Hence,

when we increase the number of processes, the number of

files per process (i.e., the amount of I/O) decreases linearly.

Therefore, for all the cases, as shown in Figure 14, we see

the time sub-linearly decreases with an increasing number of

processes. In multiple files per process case, there is an equal

division of files among processes, and hence the overall time

will decrease. We see that the applications’ I/O scale linearly.

2) Shared File Per Process: In this category, we have

Cosmic Tagger Application, Distributed FFN, and CANDEL

Benchmark. In all of these cases, the processes access a

single shared file and train over a portion of the data. The

size of dataset is fixed (i.e., strong scaling). The results are

shown in Figure 15. We observe an increase in performance

(i.e., decrease in time) on strong scaling the applications.

However, the decrease of time is not close to the ideal as seen

in multi-file case. This is because when multiple processes

access a shared file, the interference of reading the metadata

starts dominating the overall I/O time [47]. This is due to lack

of any co-ordination between data access. We tested to verify

that the metadata contention is only present in larger scales.

VI. CONCLUSIONS

The emergence of deep learning (DL) techniques has

dramatically improved scientific exploration and discoveries.

Scientists have studied the computational aspects of DL appli-

cations in scientific domains in great detail. However, the I/O

behavior is not well understood yet. As DL applications con-

sume massive amounts of data, understanding the patterns with

which they perform I/O is crucial for the overall efficiency of

the process. In this work, we characterize different aspects

of I/O across several scientific DL applications. We provide

a detailed methodology and analysis to describe this behav-

ior. Additionally, we propose a Deep Learning I/O (DLIO)

benchmark , which encapsulates all the different aspects of DL

applications under one hood. Our results showcase our DLIO’s

accuracy and how it can be utilized to optimize the I/O be-

havior of applications by 1.35x through existing optimizations

in the TFRecord and HDF5 libraries. Finally, we showcase

how the I/O access in scientific formats such as HDF5 do not

scale well due to their lack of optimizations in DL space. We

envision building a middleware solution that would accelerate

I/O for scientific data formats in DL applications.
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