
DFTracer: An Analysis-Friendly Data Flow Tracer
for AI-Driven Workflows

Hariharan Devarajan1, Loı̈c Pottier1, Kaushik Velusamy2, Huihuo Zheng2, Izzet Yildirim3,
Olga Kogiou4, Weikuan Yu4, Anthony Kougkas3, Xian-He Sun3, Jae Seung Yeom1, and Kathryn Mohror1

hariharandev1@llnl.gov, pottier1@llnl.gov, kaushik.v@anl.gov, huihuo.zheng@anl.gov, iyildirim@hawk.iit.edu
ok22b@fsu.edu, yuw@cs.fsu.edu, akougkas@iit.edu, sun@iit.edu, yeom2@llnl.gov, and kathryn@llnl.gov

1Lawrence Livermore National Laboratory 2Argonne National Laboratory 3Illinois Institute of Technology
4Florida State University

Abstract—Modern HPC workflows involve intricate coupling
of simulation, data analytics, and artificial intelligence (AI)
applications to improve time to scientific insight. These workflows
require a cohesive set of performance analysis tools to provide a
comprehensive understanding of data exchange patterns in HPC
systems. However, current tools are not designed to work with
an AI-based I/O software stack that requires tracing at multiple
levels of the application. To this end, we developed a data flow
tracer called DFTracer to capture data-centric events from
workflows and the I/O stack to build a detailed understanding
of the data exchange within AI-driven workflows. DFTracer has
the following three novel features, including a unified interface
to capture trace data from different layers in the software stack,
a trace format that is analysis-friendly and optimized to support
efficiently loading multi-million events in a few seconds, and the
capability to tag events with workflow-specific context to perform
domain-centric data flow analysis for workflows. Additionally,
we demonstrate that DFTracer has a 1.44x smaller runtime
overhead and 1.3-7.1x smaller trace size than state-of-the-art
tracing tools such as Score-P, Recorder, and Darshan. Moreover,
with AI-driven workflows, Score-P, Recorder, and Darshan
cannot find I/O accesses from dynamically spawned processes,
and their load performance of 100M events is three orders of
magnitude slower than DFTracer. In conclusion, we demonstrate
that DFTracer can capture multi-level performance data,
including contextual event tagging with a low overhead of 1-5%
from AI-driven workflows such as MuMMI and Microsoft’s
Megatron Deepspeed running on large-scale HPC systems.

Index Terms—deep learning, workflows, I/O, tracer, multi-
level, application apis, system calls, transparent, interception.

I. INTRODUCTION

Modern HPC workloads consist of various applications
such as simulations, data analytics, and artificial intelligence
(AI) that exchange large amounts of data for solving scientific
problems on large-scale HPC systems [1]. These workloads
utilize AI techniques to automate data analytics, steer simu-
lation convergence, provide smart sampling of large problem
spaces, and increase the performance of inner-loop modeling
of scientific workflows [2], [3], [4], [5], [6], [7]. These
AI-driven workflows depend on large multi-terabyte datasets
and complex data exchanges between various applications to
achieve their goals. The data exchange can incur a significant
performance bottleneck and thus we need performance
analysis tools to capture data flow between applications and
various storage subsystems in modern HPC systems [8], [9].

Many existing application performance analysis tools within
HPC ecosystems can be used to extract I/O performance
information and provide insight about the data exchanges
in these large-scale HPC workflows. These I/O tools can be
classified into two categories based on the level at which they
collect events: application-code and system-call level tools.
The application-code level tools depend on compile time
flags or developer annotations to capture the performance
of functions during execution [10], [11]. On the other hand,
system-call level tools intercept I/O calls inside the application
and log information about the I/O call characteristics [12],
[13]. These tools are widely used in the community to capture
the behavior of workloads.

Although many performance analysis tools are available,
AI-driven workflows have three unique features that make
utilizing these tools challenging for scientists. First, these
workflows have a complex interplay between computation and
data flow tasks, which means we have to use both application-
code and system-call level tools together to understand the be-
havior of the workflows. It is challenging to merge and analyze
performance data from multiple tools, largely because tools
utilize different resolutions for time measurement, creating an
incompatible timeline of events between different performance
tools [8], [14], [15], [16]. Second, AI-driven workflows contain
billions of events that need to be analyzed using out-of-
core distributed analysis tools [17], [18], [19]. HPC tools
utilize binary formats because they prioritize minimizing the
overhead of instrumentation over ease of exploratory analysis
using Python frameworks. Also, converting this binary data
into a form compatible with popular Python-based analysis
frameworks is extremely time-consuming, and it doubles the
space requirements [20], [7]. Finally, the events within AI-
driven workflows require additional contextual information to
enable domain-centric analysis. For instance, workflows often
execute in stages that comprise one or more applications. In
these cases, we can map stage information with individual
events that can allow analysis tools [21] to group and optimize
workflow stages. Another example involves AI workloads
where each data read contains application context such as
training step, image dimensions, logical worker index, and
epoch number [8], which can help identify inefficiencies in the

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/31.00©2024IEEE

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00023&domain=pdf&date_stamp=2024-11-17

input pipeline’s performance. Existing application-code level
tracers cannot store workflow-level context and events to assist
in domain-centric analysis of the workflow’s performance.
These challenges dictate the need for an I/O tracer optimized
to capture and analyze events from AI-driven workflows.

This work presents a data flow tracer, called DFTracer [22],
that captures events from both the application-code and
system-call levels for AI-driven workflows. DFTracer utilizes
a unified tracing interface, a portable trace format, and
dynamic metadata tagging to collect multi-level events for
workflows. The unified tracing interface is written in C++ for
low-overhead tracing with wrappers to C and Python. The
tracer uses an indexed GZip [23] compression technique over
our JSON lines-based trace format, significantly reducing
space requirements and enabling efficient reading for
distributed analysis. Moreover, DFTracer’s unified interface
supports metadata tagging for events, allowing the application
or middleware software to dynamically store additional
contextual information for every event. This additional
contextual information allows analysis tools to perform
domain-specific performance analysis that other tools cannot
support. Results demonstrate that our compressed trace
format is smaller and faster than state-of-the-art tracing tools.
Finally, we showcase our DFAnalyzer, which builds a parallel
loading pipeline to efficiently read the events from DFTracer
files to enable distributed analysis for large-scale AI-driven
workflows. The key contributions of this work are:
1) Design of DFTracer for capturing both application-code

and system-call level events simultaneously from AI-driven
workflows;

2) Building of a novel trace format that optimizes for low-
overhead capture and uses compression for space reduction
and custom indices for efficient analysis; and

3) Development of DFAnalyzer to demonstrate an efficient
pipeline to load DFTracer files and enable distributed I/O
analysis for AI-driven workloads.

II. BACKGROUND AND RELATED WORK

Traditionally, I/O in HPC applications are often bulk-
synchronous in nature. Therefore, I/O and compute are
measured and analyzed separately by the scientists. Within
the HPC tool ecosystem, there are many tools that capture
application behaviors. The tools most related to the work in
this paper are application-code and system-call tracers.

The application code tracers add annotations within the ap-
plication to track the runtime performance of functions, class’
methods, and processes within the application. The traces
from these tools are used for application-specific cross-cutting
analysis, which aims to capture the performance of the critical
path of the applications. Different tracers can be used to cap-
ture events depending on the application’s language, such as
PerfFlowAspect [11] for Python applications and Caliper [10]
for C/C++ applications. On the other end of the spectrum,
some tracers use introspection techniques to collect detailed
execution traces for exploratory analysis of HPC applica-
tions, such as Score-P [24], TAU [25], HPCToolkit [26], and

Recorder [13]. These tracers have proven to assist performance
engineers in finding inefficiency in large-scale applications
and improving performance. Except for Recorder, all tracers
in this list are primarily concerned with computation-based
tracing. Recorder is an I/O tracing tool that captures I/O
system calls and C/C++ function calls by using the function-
tracing mechanism as provided by GCC and Cuda.

In the space of system call tracers for I/O, the two popular
tracers in the HPC ecosystem are Darshan DXT [12] and
Recorder [13]. These tracers capture POSIX and STDIO
calls from the applications. Darshan is a profiler that captures
aggregated performance counters that can provide a high-
level understanding of HPC applications [12]. Additionally,
Darshan has a DXT module [27] that traces individual I/O
calls from read and write APIs from the POSIX interface.
Darshan’s DXT tracer is being used by I/O analysis tools
such as DXT-Explorer [28] and Dristhi [29] to demonstrate
the access pattern of the application. On the other hand,
Recorder captures all I/O calls from all layers of the I/O
stack along with application function calls, MPI [30], and
CUDA [31] events from the workload. Recorder has been
used to analyze workflows [7] such as Montage and 1000
Genomes. Both these tracers use dynamic linking at compile
time or LD PRELOAD to capture all application I/O calls
with a special focus on MPI-based parallel applications with
good support for non-MPI based workloads.

III. MOTIVATION

Current application-level tracers present challenges that
motivated us to develop DFTracer. First, the LD PRELOAD
mechanism has limitations in capturing processes spawned
from a parent process, which is common in most AI-based
workloads [8], [7]. For instance, PyTorch [32] and DALI [31]
data loaders use process spawning that creates a new worker
process outside the scope of the original application to execute
I/O calls. In these cases, the worker processes are not instru-
mented via LD PRELOAD, which results in missing tracing
output for I/O calls. For this, DFTracer has a Python binding
that forces the Python to load our tracer even on the forked and
spawned processes. Second, scientists have tried to combine
multiple traces from the application-code and system-call level
tools to create a coherent profile of the application perfor-
mance [8], [7], [14], [15], [16]. However, combining trace data
from different tracers is a non-trivial task as we need to parse
multiple types of traces and resolve timing resolution issues
among these tracers to build a correct timeline of events. Addi-
tionally, with the exception of PerfFlowAspect and Caliper, all
the tools mentioned above utilize a binary format to store the
trace data, which makes reading them in Python extremely
expensive [20], [7]. Finally, as mentioned before, AI-driven
workflows require contextual information on events to analyze
I/O bottlenecks. This feature is not present or is limited at best
in all current tracers. DFTracer captures events from applica-
tion code and system calls with dynamic contextual metadata
into a single log format that is interoperable and compatible
with many C/C++ and Python analysis frameworks.

Table I: Capturing Unet3D with different traces

Score-P Darshan
DXT Recorder DFTracer

Events Captured 68,752 189 1,389 1.1M
Add All I/O to Master thread to test these tools
Overhead for
capturing 1M events 13% 23% 13% 7%

Load Time for events captured
1M events 3.56 min 1.6 min 13 min 62 sec
10M events 34.6 min 17 min 2.2 hr 1.3 min
100M events 6.1 hr 3.3 hr >12 hr 3.4 min
Trace size for events captured
1M events 59 MB 9 MB 20 MB 8.4 MB
10M events 610 MB 76 MB 169 MB 56 MB
100M events 5 GB 638 MB 1.3 GB 556 MB

To illustrate the limitations of current tracers for AI-driven
workflows, we present an example of the Unet3D AI model.
Unet3D is a network for volumetric segmentation that learns
from sparsely annotated volumetric images popularly used
in medical image segmentation. The dataset contains 168
images, each of size ≈140 MB. The total dataset size is 23
GB in Numpy array format (NPZ). The workload consumes
this dataset with a batch size of four images read from
four worker threads per GPU using data parallel training by
PyTorch data loader. We execute the workload with ten epochs
on the Corona supercomputer and trace it with Score-P [24],
Darshan DXT [33], and Recorder [13]. We present the results
of this investigation in Table I. The workload generated a
total of 1.1M I/O events. However, Score-P only captures
68K events, Darshan DXT captures 189 events, and Recorder
captures 1,389 events. These tracers capture I/O events on
the master process. However, in this PyTorch workload, the
master process on the GPU dynamically spawns worker
processes that perform the actual reading for the workload.
If we change the AI workload to do I/O on the master
process, it removes I/O parallelism but it can be now traced
by these tools. In this case, we see that load time for all
solutions linearly increase with number of events due to lack
of parallelization in reading resulting in load times for 100M
events to be 6.1 hr, 3.3hr, and greater than 12 hr for Score-P,
Darshan DXT, and Recorder respectively. Additionally, we see
that the trace size of Darshan DXT is smallest among existing
solution. We can present some results for DFTracer for this
case. It can capture all 1.1 M events at a low overhead of 7%.
Additionally, the load time for DFTracer with 40 analysis
threads is 3.4 minutes as compared to Darshan DXT which
was 3.1hr with a trace size 14% smaller than Darshan DXT.

IV. DFTRACER

DFTracer [22] is a comprehensive data flow tracer that sup-
ports AI-driven workflows in HPC systems. These workflows
differ from traditional bulk-synchronous workloads that are
the primary focus of all existing I/O tracing tools [34], [35],
[36], [37], [38]. Specifically, AI-driven workflows have three
main unique features. First, the workflow contains applications
written in different languages, such as C, C++, and Python, as
opposed to traditional HPC workloads written using only one
language. Second, these workflows often contain spawning

Application

HDF5

MPI-IO

STDIO

POSIX

DFTrace Library

GOTCHA

Unified Trace Interface

DFTrace
Writer

Buffering Compression

DFTrace Format
JSON: id, event_info, metadata

DLP Analyzer

Indexer Trace Loader
(Dask

Runtime)

Queries

Cluster
Manager

Summary

Visualize

Custom

1.2
intercepts

7.
Index
and
Load

Trace

C Code
Interfaces

C CPP Python
1.1Calls

2. Logs Events

3. Writes
event

5. On
Finalize

4. Write Events

Dask Dataframe
(Distributed Memory)

9. Query Trace data

8. Create
dataframe

6. Update Trace

Figure 1: DFTracer contains a unified interface exposed to
multiple level events. These events are buffered into larger
chunks, written to disk as JSON lines, and compressed. The
DFAnalyzer loads the trace files, indexes them, and creates a
Dask dataframe to extract insights from the workflow.

of processes that may lead to issues with interception
(as discussed in Section III). Finally, these workflows are
executed in a task-based paradigm where I/O and computation
tasks occur asynchronously. The asynchronous execution of
events results in many overlapping events even from a single
process, which requires parallel and distributed analysis to
extract insights efficiently from these workflows. To address
the unique features of AI-driven workflows, we design and
implement DFTracer with the following main objectives.
1) Capturing Heterogenous events: DFTrace captures events

from different programming languages simultaneously;
2) Support for AI-driven workflows: DFTrace handles forks

and spawns of processes to capture all I/O calls;
3) Trace format for efficient writing and analysis: DFTrace’s

trace format stores events with low overhead and enables
embarrassingly parallel analysis.

We present the high-level architecture of DFTracer in
Figure 1. We show the two main parts of the architecture,
namely the DFTracer library (center, blue lines) and the
DFAnalyzer tool (right, orange lines). The library attaches
to the workflow’s runtime to collect events from multiple
application levels and stores them in a custom DFTracer
format. The library provides language-specific interfaces to
capture application-code information (left, Line 1.1) and uses
GOTCHA [39] to intercept system I/O calls transparently (left,
Line 1.2) from the workflow. All the events are passed to the
unified trace interface that efficiently converts the events into
C++ code. These events are passed to the DFTracer Writer that
buffers all events into memory and then flushes them out once
the buffer is full (left, Line 3 and 4). Finally, once the workload
ends (left, Line 5), the DFTracer Writer performs a block-wise
compression on the trace data using GZip compression and
stores the compressed file in the file system (left, Line 6).

DFAnalyzer is responsible for efficiently loading the
DFTracer format and providing a Pandas-like interface to
query the trace events for analysis (Figure 1 right side).
First, the analyzer indexes the compressed trace data by
utilizing GZip’s metadata and storing the offset to line map
information in an SQLite database (right, Line 7). Then, we
build a parallel pipeline using the Dask framework to read

Algorithm 1 Pseudo Code for language wrappers for the
DFTrace unified tracing interface

procedure BEGIN(name)
start← get time()

end procedure
procedure UPDATE(key, value)

metadata.emplace(key, value)
end procedure
procedure END(name)

dur ← get time()− start
tracer.log(name,LANG, start, dur, context)

end procedure

batches of lines out of an indexed and compressed trace
format and construct a Dask dataframe in memory (right,
Line 8). The Dask dataframe provides a Pandas-like API to
users to perform efficient distributed analysis on trace events.

In the next sections, we will describe the components in
detail. Specifically, Section IV-A describes the design and
significance of the unified tracing interface. Section IV-B
describes the key features of trace format that enable scalable
analysis. Section IV-C describes the compression and indexing
mechanism to accelerate trace loading. Section IV-D describes
the analysis workflow, including trace parallelization, load
balancing, and distributed memory cache. Section IV-E
describes the DFTracer and DFAnalyzer API for helping
Users integrate with DFTracer. Section IV-F describes the use
cases generated by DFTracer and its unique advantage to its
users. Finally, Section IV-G gives the implementation details.

A. Unified Tracing Interface

DFTracer uses a unified tracing interface written in C++
to provide high-performance tracing for AI-driven workloads.
The interface consists of two main methods, namely,
get_time() and log_event(). get_time() returns
a microsecond scale of timestamp using gettimeofday()
C function. Among different timing functions between
Python, C, and C++, such as time, std::chrono, and
clock_gettime, gettimeofday() is several orders
of magnitude faster and more stable. The second API is
log_event(), which takes the event name, event category,
start timestamp, duration, and contextual metadata to log
an event. Here, the contextual metadata is an optional
parameter handled using pointers for efficient memory
management. These two methods are invoked by wrappers
for application and system calls written for the user. For
different programming languages, we provide different levels
of interfaces to help the developers instrument their code with
minimal effort. These levels are function, code block, and
custom. The implementation of each of these cases would
differ based on the language of the wrappers. However,
all follow a logic similar to Algorithm 1. This algorithm’s
contextual metadata is optionally initialized if the update
method is called. This allows the DFTracer to allocate
memory efficiently and only incur the cost for features that
the workflow uses. For instantaneous events, we have the

INSTANT interface to capture name, variadic metadata args,
and store the event with zero duration. The unified interface
uses a singleton pattern to initialize all data structures once
and keep operation overhead minimal at runtime.

B. Analysis-friendly DFTracer Format

AI-driven workflows have two major requirements from the
trace format. First, AI workflows involve many asynchronous
events, which require distributed analysis between compute
and I/O events to understand inefficiencies within the
workflow. For this goal, the format needs to be efficiently
read by parallelizing and pipelining the reading of the trace
files. Second, AI workflows need to tag events with contextual
information that can help map the trace back to workflow
logic. This requires the trace to support a dynamic format
that can store an arbitrary number of contextual metadata in
the events. Finally, AI workflows contain multi-million events
per process, which necessitates compression of trace log files.

To satisfy these workflow requirements from the trace file,
we select a JSON lines trace format compressed using an
indexed GZip compression. As demonstrated in the evaluation,
this approach is faster to trace and smaller in size than state-
of-the-art compressed binary format. JSON lines are known to
be portable and parallelizable across many frameworks written
in Python, C, and Java, such as Dask, Modin, and Spark.
Additionally, JSON allows us to easily add dynamic contextual
information to events. In contrast, adding this dynamic contex-
tual information in binary format results in non-portable traces
and incurs overhead for allocating space for the dynamically
sized data. Finally, the indexed GZip compression allows us
to reduce the file size by almost 100× for large traces while
allowing faster parallel loading from compressed files. We
acknowledge that most tracers use binary format to store their
data with minimal space requirements. However, one of the
major challenges that we faced with existing tools such as Dar-
shan DXT and Recorder was that it was expensive to convert
their binary trace format into Python dataframe libraries such
as Pandas, Dask, and Modin. We investigated this bottleneck
and found that the conversion between C types and Python
using the built-in ctypes [40] packages is inefficient and cannot
be done in an out-of-core manner. This motivated us to look
at more portable ways to store our trace data. Our results
demonstrate that the compressed textual format occupies 30%
less space as compared to the compressed binary format of
the Darshan DXT tracer. Our JSON line format consists of
the following fields: a) id: index of the file, b) name: event
name (e.g., open and model.save), c) cat: event category (e.g.,
POSIX and PyTorch), d) ts: starting timestamp of the event in
microseconds, e) dur: duration of the event in microseconds,
and f) args: contextual arguments (e.g., file name and step).

C. Indexed GZip Compression

The DFTracer uses blockwise GZip compression on the
trace data, which is the recommended compression method for
JSON lines. There are faster and more efficient compression
libraries such as ZSTD and Brotli. However, the choice

DFAnalyzer Pipeline

Parallel
GZip

Indexer

DFTrace
(*.gzip)
DFTrace
(*.gzip)

Index
Files

(*.zindex)

Index
Files

(*.zindex)

1. load

2. store
indices 3. collect

Parallel Batch
Generator

4. use stats
to parallelize

trace read.

5. generates multiple
batches per line

JSON Loader

6. yield each
JSON line

Partitioned
Dask

Dataframe
(Memory)

Partitioned
Dask

Dataframe
(Memory)

Dataset
Repartitioner

Parallel
Stats

Collector
Max Lines

Size

Parallel
Stats

Collector
Max Lines

Size

Analyzer
Parameters

Batch Size

Workers

Analyzer
Parameters

Batch Size

Workers

7. repartition json
lines from all files
for efficient analysis
through load
balancing

8. load

Batch Loader
Read Data

Decompress

Batch Loader
Read Data

Decompress

Figure 2: The DFAnalyzer efficiently reads all trace files in a
parallel and pipelined manner.

of compression library depends on the compressibility of
JSON files, efficient decompression, and, most importantly,
the indexing capabilities. The GZip compression provided
much more efficient indexing of the line-based JSON format,
enabling us to parallelize the trace loading process efficiently.
The compression occurs at the end of the workflow during the
destruction of the application. Once the GZip file is generated
for our DFTracer traces, during analysis, we build an index
over the GZip trace file and store the indexed information
in an SQLite file. This indexing is crucial to enable efficient
parallelization of trace loading. With this indexing, we can
load a batch of compressed JSON lines and uncompress just
parts of the data. This avoids the expensive decompression
of the whole file by each analysis worker. The pieces of
information stored in the SQLite file are configuration,
compressed lines, and uncompressed data. The configuration
contains all the options we used to build the index, such
as index of the file, type of index, and GZip flags. The
compressed lines contain the compressed file’s line number,
offset, and length. This information is critical to read lines
directly from the compressed data without decompressing
the whole trace file. Finally, the uncompressed table contains
information on the uncompressed data, including buffer
sizes and uncompressed offsets. Using this information on
uncompressed data, the analyzer can build an efficient pipeline
to read the data parallelly and construct a Dask dataframe of
events while considering the memory footprint of the trace for
each worker process. During indexing, we use GZip’s interface
to read the compressed statistics from the file and use it to load
compressed file metadata information within the library. The
GZip interface gives us a stream that can be iterated over to
get the uncompressed and compressed data statistics stored in
the above tables. This indexer is written in C++ and, therefore,
is very fast in creating an SQLite index file. The indexing of
the GZip file is done as part of the DFAnalyzer pipeline.

D. DFAnalyzer

DFAnalyzer uses the Dask framework to build a parallel
and pipelined workflow to read the data out of DFTracer
traces. The primary goal of the analyzer is to construct a
parallelization workflow to maximize the utilization of workers
for distributed analysis. Efficient distributed analysis requires
data to be shared evenly across all analysis workers. As the
trace data could be potentially skewed with more data on

certain processes than others, we need to make sure to reshard
the final dataset across multiple workers initially. So, we use
the compressed trace files from DFTracer as the input and
produce a balanced Dask dataframe as the output which can
be analyzed efficiently over distributed memory (Figure 2).
Within DFAnalyzer, we index the trace files and store them in
the file system (Figure 2, Line 1). The indexing is performed
in parallel, with each worker indexing one compressed trace
file. As the indexing uses SQLite files to store the index,
storing data on a local file system or a network file system
over parallel file systems is recommended. This is because
parallel file systems perform poorly for executing SQL queries
on the index files. Once we generate the index files, we collect
some statistics of the trace data, such as the total number
of JSON lines and the total size of the uncompressed data,
to determine the ideal sharding of trace events among the
analysis workers for distributed analysis (Line 3). Once we
collect these statistics, we then build a task pipeline that
creates several batches of trace event reading and produces
tuples with trace file name and batch size (Line 4). These
tuples are fed in parallel to the Batch Loader, which reads the
compressed trace files for the batch of lines and decompresses
it in memory (Line 5). The Batch Loader generates a list of
JSON lines that are processed in parallel by the JSON Loader
(Line 6). The JSON Loader converts the JSON Line string into
dictionaries, which are converted into the Dask dataframe. We
then repartition the dataframe based on the collected statistics
and produce a dataframe on which queries can be parallelized
efficiently (Line 7). Finally, this repartitioned data is loaded in
distributed memory and is available for querying by the user.

E. DFTracer and DFAnalyzer Usage APIs

DFTracer allows users to capture low-level system and ap-
plication calls for AI-driven workflows. The low-level system
calls are captured using a transparent interception mechanism
using GOTCHA [39]. The interception can be done using
LD_PRELOAD or linking the DFTracer library directly within
the application code. For the application calls, users can
annotate their source code with DFTracer hooks to capture
events and store event-level tags for their application. There are
three main parts to integrating DFTracer with application code:
a) initialization, the routine initializes the tracer; b) function
capture, a set of routines that help users capture their code
structures; and b) finalization, the routine cleans up the tracer
data structures and closes the tracing. The function routines
are tailored to support language-native semantics.

1 # i n c l u d e <d f t r a c e r / d f t r a c e r . h>
2 vo id foo () {
3 DFTRACER CPP FUNCTION () ;
4 {
5 DFTRACER CPP REGION(CUSTOM) ;
6 DFTRACER CPP REGION START(BLOCK) ;
7 DFTRACER CPP REGION END(BLOCK) ; / / END BLOCK
8 } / / DFTRACER CPP REGION ends h e r e i m p l i c i t l y
9 } / / DFTRACER CPP FUNCTION ends h e r e .

Listing 1: Integrating DFTracer with C++ application

1 from d f t r a c e r . l o g g e r i m p o r t d f t f n
2 d f t f n = d f t f n (”COMPUTE”)
3 @dft fn . l o g
4 d e f compute (s e l f , i n d e x) :
5 wi th d f t f n (c a t =” b l o c k ” , name=” s t e p ”) a s d f t :
6 s l e e p (1)

Listing 2: Integrating DFTracer with Python application

As shown in Listings 1 and 2, users can annotate their
code for different languages. In each programming language,
the user can capture function-level calls (e.g., Listing 1
line 3 or Listing 2 line 3) and finer code blocks (e.g.,
Listing 1 line 6 or Listing 2 line 5) within their code. For
Python, the DFTracer API can capture functions and regions
of code using function decorators, contextual operators,
or iterative operators. Additionally, users can configure
DFTracer at runtime through environment variables or a
YAML configuration file. For instance, users can toggle I/O
interfaces, compression, and core-affinity capture at runtime.

The DFAnalyzer uses the Dask framework for enabling
distributed analysis. Within DFAnalyzer, we provide cluster-
specific scripts to manage the Dask distributed cluster for the
users. The users can then connect to this cluster using our
command line analysis utility, which can summarize these
traces. As Jupyter notebooks are a common data science tool
for analysis, we support loading the DFAnalyzer within a
Jupyter notebook and allow exploratory analysis of the traces.

1 from d l p a n a l y z e r . main i m p o r t DLPAnalyzer ,
s e t u p d a s k c l u s t e r

2 s e t u p d a s k c l u s t e r ()
3 a n a l y z e r = DFAnalyzer (f i l e n a m e)
4 a n a l y z e r . summary ()
5 a n a l y z e r . e v e n t s . groupby (”name”) [” s i z e ”] . sum () .

compute () / 1024**3

Listing 3: Analyzing traces using DFAnalyzer

To use DFAnalyzer within Jupyter Notebook, users can load
the DFAnalyzer class (Listing 3) to load up the traces. The
class provides access to the events as a Dask Dataframe that
can be used to execute distributed queries on the trace data.

F. Use Cases enabled by DFTracer

DFTracer has unique features such as multi-component
tracing (e.g., system calls and application calls) along with
metadata tagging compared to state-of-the-art tools. These
features enable new analysis opportunities that were previously
challenging and expensive to perform. Some critical use cases
where tracing through DFTracer could enable are:
1) Exploratory Analysis: DFTracer collects data from multiple

sources to explore the behavior of AI-driven workflows.
DFTracer collects detailed events such as process IDs,
filenames, transfer sizes, and offsets. The efficient analysis
pipeline also allows users to consume and query on large-
scale multi-terabyte trace logs for AI-driven workflows.

2) Multi-Component Analysis: DFtracer collects data from
both the applications and the system-level calls. This multi-
level data allows users to individually analyze components

such as network, computation, or I/O from the same trace.
Additionally, with multiple components collected on a
similar timescale, the user can perform an overlap analysis
between these components. For example, in our figures for
Unet3D, we can calculate the time the compute spends
waiting for data to be ready in the DL I/O pipeline.

3) Performance debugging and optimization: DFTracer’s tag-
ging feature allows users to tag events with a custom tag.
This feature greatly enhances performance debugging and
optimizations as users can tag their events (even if unre-
lated) with the same tags and make performance bottleneck
identification during analysis. For instance, a file accessed
through a middleware library that uses node-local storage
could use the filename as a tag for all its related events. This
metadata tagging can allow users to track related events
together to identify potential bugs or bottlenecks within
their workload across multiple applications and services.

G. Implementation Details
The core of DFTracer is written in C++ standard 11

with wrappers for C, C++, and Python [22]. We provide
multiple ways to install DFTracer through CMake, pip, and
Spack. Additionally, the various options within DFTracer,
such as logging contextual information, compression, write
buffer size, and I/O interception, can be toggled using
environment variables. In some AI-driven workloads, such as
Resnet50 [41], the workload spawns isolated Python codes
that cannot be traced by language-specific interfaces (e.g.,
as in the case of ImageFolder Dataload of PyTorch [32]).
In these cases, we provide a Hybrid mode where both
language-specific interfaces and the LD PRELOAD can be
used in conjunction. Finally, we provide an analyzer as a
Python class that can be invoked from the command line or
imported into a Jupyter notebook to analyze DFTracer logs.

V. EVALUATION

In this section, we demonstrate the runtime performance and
overhead of our DFTracer tool and DFAnalyzer tool. Then, we
demonstrate the benefit of DFTracer’s multi-layer trace using
four real-world AI-driven workflows.

A. Testbed
We look at the hardware, software, metrics, and workloads

used to evaluate the effectiveness of DFTracer compared to
state-of-the-art tools.

1) Hardware: We run our experiments on multiple clusters
including Lassen, Corona, and Ruby at Lawrence Livermore
National Laboratory (LLNL) and Polaris at Argonne National
Laboratory (ANL). We chose these machines to demonstrate
that our tracer can effectively run on different architectures
and software stacks. The specifications of each machine are
described in Table II.

2) Software: DFTracer and DFAnalyzer have been tested
with different compilers and installation environments on each
system. The software stacks used on each system are listed on
Table III. Additionally, we use Score-P version 8.3, Darshan
DXT version 3.4.4, and Recorder (dev branch).

Table II: Clusters tested for DFTracer

Node characteristicsName Nodes CPU GPU RAM Arch Network

Lassen [42] 795 44 4 256 Power9 IB EDR
Corona [43] 121 48 8 256 Rome IB HDR
Ruby [44] 1,512 56 0 192 Xeon Omni-Path
Polaris [45] 560 32 4 512 EPYC Slingshot 10

Table III: Software packages for the tracer and analyzer

Software Lassen Corona Ruby Polaris
Compiler GCC 8.3.1 GCC 10.3.1 GCC 10.3.1 Cray

MPI spectrum-mpi
2020.08.19 openmpi 4.1.2 openmpi 4.1.2

Python 3.7 and
Anaconda 23.3.1 3.9.2 3.9.12 3.9 and

Anaconda 23.10.4
GOTCHA 1.0.4
Dask 2023.5.0
Pandas 2.0.3

3) Metrics: To measure the performance and space
overhead of DFTracer, we use time elapsed in seconds and
trace size in bytes. The time elapsed for each tool is compared
against the Baseline, which represents the time for running
the micro-benchmarking without any tracing enabled. The
DFAnalyzer provides a lot of metrics for us to understand the
performance characteristics of the AI-driven workflow. One
of the most important metrics is Unoverlapped I/O, which
reports the portion of POSIX I/O that is not hidden by the
application’s compute. This is an important metric for modern
AI-driven workflows due to the pipelining of computation and
I/O tasks. Similarly, we have App Unoverlapped I/O, which is
the portion of the application’s I/O calls (e.g., Numpy.open
and Pillow.open) that are not hidden by the compute. In
Section V-D, the bandwidth calculated per time interval by
“Sum of bytes transfered” divided by the ”Union of the time
across processes” in each interval. The runtime overhead of
DFTracer across all our tests was between 1-5%.

4) Workload: We use a microbenchmark written in C and
Python to test the overhead and performance of DFTracer
and DFAnalyzer. These tests were executed on the Corona
machine. Then, we characterize four AI-driven workflows on
various machines, namely UNet3D [46] on Ruby, ResNet-
50 [41] on Polaris, the Multiscale Machine-Learned Mod-
eling Infrastructure [4] (MuMMI) workflow on Lassen, and
Microsoft’s Megatron Deepspeed [5] on Lassen. The UNet3D
workload is executed using the DLIO Benchmark [8], which
simulates the I/O behavior of original workload. The ResNet-
50, MuMMI, and Microsoft’s Megatron Deepspeed are the real
workloads executed on ANL and LLNL at a production scale.

B. DFTracer Runtime Performance

To understand the overhead of DFTracer over HPC applica-
tions, we run a microbenchmark that executes n I/O operations
on Corona. We evaluate the overhead of DFTracer and Darshan
DXT tracing with two benchmarks written in C/C++ and
Python, respectively. In both these benchmarks, every process
opens a file in read-only mode, performs a thousand read
operations, and then closes the file. Each read accesses 4 KB
of data, and we scale the benchmark up to eight nodes with
40 processes per node. This results in the total number of
operations recorded to be 40 thousand for one node and 320

0

4

8

12

16

20

0

5

10

15

20

25

Ba
se

lin
e

Da
rs

ha
n

DX
T

Re
co

rd
er

Sc
or

e-
P

DF
T

DF
T

M
et

a
Ba

se
lin

e
Da

rs
ha

n
DX

T
Re

co
rd

er
Sc

or
e-

P
DF

T
DF

T
M

et
a

Ba
se

lin
e

Da
rs

ha
n

DX
T

Re
co

rd
er

Sc
or

e-
P

DF
T

DF
T

M
et

a
Ba

se
lin

e
Da

rs
ha

n
DX

T
Re

co
rd

er
Sc

or
e-

P
DF

T
DF

T
M

et
a

40k 80K 160K 320K

Tr
ac

e
si

ze
 (M

B)

Ti
m

e
(s

ec
on

ds
)

Number of Events Recordered

Time (sec)
Trace Size (MB)

Figure 3: The average runtime overhead as compared to
baseline on C/C++ benchmark for DFTracer is 5-7%, Recorder
is 16%, Score-P is 20%, and Darshan DXT is 21%.

thousand operations for 8 nodes. We test the microbenchmarks
with Darshan DXT executed in NO-MPI mode, Recorder,
Score-P, DFTracer (DFT in Figures 3 and 4), and DFTracer
with contextual information (DFT meta in the figure). Note
that events collected by Darshan DXT and DFTracer with con-
textual information are comparable. The results are presented
in Figures 3 and 4. In the figures, the x-axis shows the number
of events recorded, the primary y-axis (blue bar with error
bars) shows the time taken to run the benchmark, and the sec-
ondary y-axis (orange points) shows the trace file size in MB.

1) Overhead on C/C++ Benchmark: In Figure 3, we ob-
serve that the average overhead across all scales we tested in
Darshan DXT is 21%, Recorder is 16%, and Score-P is 20%.
The DFTracer (DFT) collects only the event data such as open,
read, and close without additional information such as size and
file name. This minimalistic tracing incurs an overhead of 5%
over the baseline at an average and is faster than Darshan
DXT by 15%, Recorder by 10%, and Score-P by 15%. The
DFTracer with contextual information (DFT Meta) incurs an
overhead of 9% and is 3% slower than the baseline DFTracer.
DFT Meta is still faster than Darshan DXT by 11%. The low
overhead of the DFTracer comes from the efficient building of
JSON events through sprintf and buffered data writing into
file-per-process log files. In the case of the DFTracer with
contextual information, we dump a map of additional infor-
mation as a part of the event into a C string using sprintf .
We also observe that the size of tracing logs from DFTracer
and Darshan DXT increases as we scale the number of unique
operations. However, the DFTracer captures more events than
Darshan as it captures more metadata I/O calls, such as mkdir
and opendir. The number of events between Score-P and
Recorder are similar to DFTracer. Even with the extra calls
captured, the compressed DFTracer trace file size is smaller
than the binary format of the Darshan DXT tracer by 18-30%,
Score-P tracer by up to 6.45x, and Recorder by up to 2.44x.

2) Overhead on Python Benchmark: In Figure 4, we
observe that the Python benchmark for the same operations
is 5-9x slower. This results in smaller tracing overhead for
Darshan and DFTracer for the same number of operations.
In this benchmark, the Darshan DXT tracing is 16% slower
than the baseline. The DFTracer (DFT) incurs an overhead

0

5

10

15

20

25

30

0

20

40

60

80

100

120

Ba
se

lin
e

Da
rs

ha
n

DX
T

Re
co

rd
er

Sc
or

e-
p

DF
T

DF
T

M
et

a
Ba

se
lin

e
Da

rs
ha

n
DX

T
Re

co
rd

er
Sc

or
e-

p
DF

T
DF

T
M

et
a

Ba
se

lin
e

Da
rs

ha
n

DX
T

Re
co

rd
er

Sc
or

e-
p

DF
T

DF
T

M
et

a
Ba

se
lin

e
Da

rs
ha

n
DX

T
Re

co
rd

er
Sc

or
e-

p
DF

T
DF

T
M

et
a

40k 80K 160K 320K

Tr
ac

e
si

ze
 (M

B)

Ti
m

e
(s

ec
on

ds
)

Number of Events Recordered

Time (sec) Trace Size (MB)

Figure 4: The average runtime overhead of DFTracer com-
pared to baseline is 1-2% and for Darshan DXT is 16%.

of 1% at an average. This is faster than Darshan by 1.19x,
Recorder by 1.52x, and Score-P by 1.31x. On the other
hand, the DFTracer with contextual information (DFT Meta)
incurs an overhead of 7% over the baseline and is 6% slower
than the DFTracer baseline. DFT Meta is still faster than
Darshan DXT by 1.13x, Recorder by 1.44x, and Score-P
by 1.25x. Additionally, the performance difference between
Darshan and DFTracer is consistent with the observations
of the C++ benchmark. Like the C++ workloads, DFTracer
traces are smaller than Darshan DXT by 18-30%, Recorder
by 3.59x, and Score-P by 7.18x. The size of the trace for
Score-P is bigger as the OTF format has different events for
start and end. Also, Darshan and Score-P store additional
high-level aggregated metrics, which increases their trace dize
by approximately 6KB and 16KB, respectively. However, for
DFAnalyzer, the indexed GZip reduces the size of the file
without compromising the reading cost.

C. DFTracer Trace Load Performance for Quering

To understand the benefit of using our DFTracer trace
format, we built a DFAnalyzer that loads the tracer traces
using the Dask parallel analysis framework. In this case, we
load traces that contain events generated from our micro-
benchmarking test case and load them with our analyzer.
We test against three trace files containing 80K, 160K, and
320K events. As a baseline, we test our performance against
PyDarshan, Recorder, and Score-P. Additionally, we optimize
these tools by using Dask-driven loading. Finally, we test
the parallelization of the loading of trace files using multiple
threads on one node. An optimized version of PyDarshan,
Recorder, and Score-P reading improves the parallelism and
pipelining of operations by using Dask bag [17]. Finally, we
have a DFAnalyzer that can read all the records in parallel
(as explained in Section IV-D). Figure 5 shows the results.
The x-axis shows the number of events, and the y-axis shows
the time taken to load the trace in seconds.

We observe that the default case for loading all events
through PyDarshan into a Pandas dataframe is costly and does
not parallelize well. Using Dask Bags to load the darshan
data parallelizes the dataframe generation, improving the anal-
ysis performance. Specifically, in most cases, DFAnalyzer is
faster than Darshan, Score-P, and Recorder. In some cases,

234.8

0

20

40

60

80

100

120

140

160

1 2 4 8 1 2 4 8 1 2 4 8

80K 160K 320K

Tr
ac

e
Lo

ad
 T

im
e

(s
ec

)

Number of Events

PyDarshan Recorder
ScoreP- OTF2 DFAnalyzer

of
Threads

Figure 5: Loading trace data from DFTracer using DFAnalyzer
is 3.3-3.7x faster than PyDarshan.

DFAnalyzer is similar or slightly slower for less number of
workers than Recorder and Score-P. However, adding more
Dask workers does not help scale the analysis. Whereas the
DFAnalyzer scales linearly with multiple workers. In the case
of the DFAnalyzer, we see that it is faster or similar to all anal-
ysis tools. Specifically, DFAnalyzer is faster than Darshan by
3.3-3.7x, Recorder by 1.07-1.85x, and Score-P by 1.02-5.22x.
The DFAnalyzer parallelizes the trace reading into batches of
1MB reads, creating more than a thousand parallelizable tasks
for loading the data. This parallelization helps the DFAnalyzer
load the data quickly into memory for analysis. Here, as
DFAnalyzer, Darshan, Recorder, and Score-P use Dask and ex-
tract similar information, the performance difference in load-
ing the dataset comes from reading the trace events out from
these trace formats. Additionally, the indexed GZip allows for
parallelizing the trace files among workers, which significantly
helps the scalability of our solution. Finally, all existing solu-
tions do not scale well with increasing workers. Thus, loading
large multi-million event trace files for larger datasets becomes
extremely expensive. With DFAnalyzer we can handle larger
traces by using more resources to parallelise the trace file and
therefore enable large-scale analysis of these workloads.

D. AI-driven workload characterization

To demonstrate the utility of DFTracer, we test four AI
workflows on different HPC machines and software stacks.
Note, we only show results from DFTracer as Darshan cannot
capture calls created from dynamic AI-driven workflows.

1) Unet3D: is a network for volumetric segmentation that
learns from sparsely annotated volumetric images popularly
used in medical image segmentation. It is a 20-layer deep
convolutional neural network that runs for 4000 epochs over
the Kidney Tumor Segmentation Challenge 2019 dataset [47].
The dataset contains 168 images, each of size ≈140 MB. The
total dataset size is 23 GB in Numpy array format (NPZ).
The workload consumes this dataset with a batch size of
four images read from four worker threads per GPU using
data parallel training by PyTorch data loader. We use the
DLIO Benchmark version of this workload, which runs the
workload for five epochs, with a simulated computation time
of 1.36 milliseconds, and checkpoints the model in every
two epochs. The workload is executed on the ruby machine

Figure 6: For Unet3d, we observe different behavior from the
application’s functions (using Python) and POSIX calls for
I/O. The Python APIs for I/O calls are more expensive than
the POSIX calls issued on the system. This shows the Python
APIs add additional overhead for reading Numpy array files.

with 32 nodes and four processes per node on the CPU. The
DFTracer captures 12M events from application computation,
application I/O calls, and POSIX I/O calls.

The DFAnalyzer creates a detailed, high-level characteri-
zation summary of workloads (Figure 6). In the summary
provided by DFAnalyzer, we observe that the read workers
spawned by PyTorch are dynamic processes with a lifetime of
an epoch. Every epoch, these workers are killed and spawned
again for the next epoch, resulting in over 2300 processes
spawned in the application’s lifetime. The characterization
shows that the workload accessed 168 files with a uniform
transfer size of 4MB using read POSIX API. Additionally, we
notice 732K read calls within the workload but 1.41× more
lseek64 calls on the dataset. This behavior is consistent
with loading Numpy array files using numpy.open API.
Overall, the execution time of the application was 105 seconds,
the compute phase ran for 22 seconds, and the last I/O call
ended at 102 seconds. If we only look at application-code
level calls, then the I/O calls issued using Numpy API take
81 seconds, and overlaps the application’s compute time for
59 seconds, leaving an unoverlapped I/O time of 22 seconds.
This behavior from the application-code level suggests an I/O
bottleneck within the workload. When we look at the system
calls executed by this application, we see that POSIX calls take
52 seconds out of 81 seconds. Even in this case, 50 seconds
of I/O time is overlapped with the compute phase. This
complete picture of application-code and system-call level
information suggests that the bottleneck is the Python layer
as numpy.open spends 55% more time after performing
I/O. This is evident from the perceived bandwidth from the
application as well. We observe that the peak bandwidth of
POSIX I/O calls is 180GB/s vs 84GB/s for application-level
I/O calls. The application performs around 3.5 MB transfers

Figure 7: In Resnet50 we see that the application I/O time is
subject to more bottlenecks than the POSIX I/O time due to
overhead introduced by Pillow.open. For POSIX I/O, the
bandwidth is 200MB/s due to the small transfer size of 56KB.

per timesteps to the file system. Additionally, out of the 52
seconds of I/O time, the application spends 99% on read,
0.3% on open64, 0.3% on close, and the rest on metadata
calls. This demonstrated that multi-level analysis can give in-
sights and verification of the behavior seen by the application.

2) ResNet-50: is a supervised machine learning model
popularly used for image classification. It is a 50-layer deep
convolutional neural network that runs for 90 epochs over the
ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) dataset. The dataset consists of a thousand
object categories with 1.2M JPEG images for training (total
size 140 GB) and 50K JPEG images for validation (total
size 6.4GB). The workload consumes these images with a
batch size of 64 images using eight read threads per GPU
using data parallel training using PyTorch’s ImageFolder data
loader. The model has a learning rate of 0.1 and a gamma
of 0.7. We used the version of ResNet-50 implemented in
the Horovod distributed deep learning training framework
with PyTorch [41]. The workload is executed on the Polaris
machine on four GPUs on one node and for one full
epoch. The DFTracer captures 9M events from application
computation, application I/O calls, and POSIX I/O calls.

Using the DFAnalyzer’s high-level summarization (Figure 7,
we observe that the read workers spawned by PyTorch are
dynamic processes with a lifetime of an epoch. Every epoch,
there are eight workers per process that read the dataset from
the parallel file system. The characterization shows that the
workload accessed 1.2M files with a normal distribution of
transfer size with the mean at 56KB and the maximum file size
of 4MB using read POSIX API. Additionally, we notice 1M
read calls within the workload but 3× more lseek64 calls
on the dataset. This behavior is consistent with loading JPEG
images using Pillow.open API. Overall, the execution time
of the application was 761 seconds and the compute phase ran

for for 134 seconds. If we only look at application-code level
calls, then the I/O calls issued using the Pillow library take
755 seconds, and does not overlap the application’s compute
time for only 134 seconds, leaving an unoverlapped I/O time
of 623 seconds. This behavior from the application-code level
suggests an I/O bottleneck within the workload. When we look
at the system calls executed by this application, we see that
POSIX calls take 605 seconds out of 761 seconds. Even in
this case, 135 seconds of I/O time is overlapped. If we look at
I/O time, the application-level I/O calls represent the time for
which the computation waits to get the next batch of images.
Whereas POSIX I/O calls represent the system calls for
performing I/O. Additionally, we notice a low bandwidth for
POSIX I/O calls as the workload only uses one compute node
and reads images with a small transfer size of 56KB average.
This complete picture of application code and system-call level
information suggests that the bottleneck is the POSIX layer.
Additionally, out of the 605 seconds of I/O time, the applica-
tion spends 99.5% on reading and the rest on metadata calls.

3) MuMMI: The Multiscale Machine-Learned Modeling
Infrastructure (MuMMI) is a framework for running large en-
sembles of molecular dynamics simulations at multiple resolu-
tion coupled through ML generation [3], [4]. MuMMI has been
used to characterize RAS membrane interaction and the RAS-
RAF protein complexes, two of the more commonly mutated
proteins in several types of cancer. MuMMI is an exploration
workflow with the goal to run a large set of MD simulations,
then use these simulations to re-train the model until the two
states are bridged. MuMMI leverages an ML model to generate
biological structures, which are then fed into a pipeline of
different molecular dynamics codes operating at different
scales, from macroscopic to coarse-grained (CG) scale. We run
the workflow with 32 nodes and with a wall time of 12 hours.

Figure 8 shows the timeline of I/O operations for the
MuMMI workflow. We see that throughout the timeline,
MuMMI performs I/O and achieves an average bandwidth of
1GB/s with more bandwidth initially than later in the workflow
(Figure 8(a)). This is because the initial part of the workflow
is dominated by the simulation code, which writes large
chunks of data into local tempfs, and then as the workflow
proceeds, the analysis kernel produces small accesses on these
simulation files, which reduces the bandwidth. This behavior
is consistent with the transfer size timeline where the accesses
are large initially and then, after four hours, are dominated
by small accesses from the analysis kernel (Figure 8(b)).

Using the DFAnalyzer’s high-level summarization
(Figure 8(c)), we observe that the workflow has 4M
events in 12 hours and spends 372 seconds performing
I/O. Overall, the workflow writes 18GB of data and reads
300GB of data. However, the read and write operations
only contribute to 1% of the overall I/O time. One of the
major contributions to I/O time is metadata calls, such as
the opening of files (open64) and checking statistics of files
(xstat64). The open calls contribute to 70% of the I/O time,
and the xstat64 call contributes to 20% of the I/O time.
Overall, the workflow creates 22,949 processes, and therefore,

0 6116 12232 18349 24465 30582 36698 42815

Timeline (sec)

0

7

15

22

30

T
im

e
 (

s
e
c
)

0.0

1.0

1.9

2.9

3.8

B
a
n
d
w

id
th

 (
G

B
/s

)

(a) POSIX I/O call Timeline.

0 6116 12232 18349 24465 30582 36698 42815

Timeline (sec)

0.0

2.6

5.2

7.8

10.4

Tr
a
n
s
fe

r
S
iz

e
 (

M
B

)

(b) Average Transfer Size Timeline.

(c) High-level Summary.

Figure 8: The MuMMI workflow spends 332 seconds on I/O.
The aggregate bandwidth it achieves from the parallel file
system is 1GB/s, with a wide distribution of transfer sizes.

all the traces should be analyzed to get a complete picture
of the workflow. Additionally, the read calls have a wide
distribution of requests, from small 2KB requests for analysis
to large 500MB requests for model reading. This makes
doing analysis on such a diverse dataset challenging, and we
need to look at the distribution and not the overall average.

4) Microsoft Megatron DeepSpeed: Megatron is a large,
powerful transformer developed by the Applied Deep
Learning Research team at NVIDIA [48]. Microsoft has
a version of Megatron integrated with its DeepSpeed [5]
framework. In this workload, we use the 0.9.5 version of the
Megatron Deepspeed and run the pre-train model for GPT.
We run this with 8 nodes with four GPUs per node on the

0 6016 12033 18050 24067 30084 36101 42118

Timeline (sec)

0

13

26

39

52
T
im

e
 (

s
e
c
)

0.0

12.6

25.1

37.7

50.2

B
a
n
d
w

id
th

 (
G

B
/s

)

(a) POSIX I/O call Timeline.

0 6016 12033 18050 24067 30084 36101 42118

Timeline (sec)

0.0

57.3

114.6

172.0

229.3

Tr
a
n
s
fe

r
S
iz

e
 (

M
B

)

(b) Average Transfer Size Timeline.

(c) High-level Summary.

Figure 9: The Megatron Deepspeed workload uses large trans-
fer sizes and achieves an aggregated bandwidth of 24GB/s.

Lassen Machine. The application runs with one epoch and
32K iteration, with checkpointing occurring every thousand
steps. At each iteration, the workload read 160 samples.

Figure 9 demonstrates the I/O behavior of the Megatron
Deepspeed workload. In this workload, we see that the appli-
cation does multi-megabyte I/O throughout the timeline of the
application (Figure 9(b)). This is dominated by checkpointing
writes. Because of large transfer sizes, the aggregate band-
width of the workload is between 10-50GB/s. As the time
progresses for the same amount of I/O, we see a higher I/O
time. We hypothesize that this was due to the job spanning
over 12 hours and that the system was more busy towards the
end of the job, which was during the middle of the night.

Using the DFAnalyzer’s high-level summarization (Fig-
ure 9(c)), we observe that the dataset is relatively small and is
read using a single worker thread by the PyTorch framework.

However, during checkpointing, it writes a total of 4TB of
data across eight checkpoints for 8K steps. The application
runs for a total time of 3530 seconds, with the checkpointing
taking 103 seconds overall. This application was not integrated
with application code level calls, so we only have system I/O
calls, and we see that the application does 40K write calls
with a mean and median transfer size of 110MB and 12MB,
respectively. It spends 95% of its I/O time on checkpointing,
and only 2.5% of its I/O time is spent in reading the dataset.
Upon introspection of the checkpoint files produced, we ob-
serve that the majority of I/O is performed while checkpointing
the optimization state (60% of write I/O), followed by layer pa-
rameters (30% of I/O time), and the rest by model parameters.

VI. CONCLUSIONS

With the increasing adoption of AI-driven scientific and
engineering workflows with big data, I/O operations often
create major performance bottlenecks. The performance of
I/O varies significantly depending on the behavior of the
workload. DFTracer offers an agile and portable means to
analyze I/O performance and aids in optimizing the end-to-
end performance for AI-driven workflows. We demonstrate
that DFTracer can dynamically capture different levels of
information at runtime with a low time overhead of 1-5%
and is 4% faster than state-of-the-art tracers such as Darshan
DXT, Score-P, and Recorder tracing. Additionally, the trace
file generated with DFTracer with 320 million events is
1.18-7.1x smaller than Darshan’s DXT, Score-P, and Recorder
tracing with the same level of information. DFAnalyzer
can read DFTracer traces 3.7-5.2x faster than PyDarshan,
Recorder, and Score-P analyzers with the same Dask-based
parallel loading as a result of the analysis-friendly trace
format that our approach provides. Also, DFAnalyzer has
three orders of magnitude faster load times for 100M events
as compared to state-of-the-art tools. Finally, we characterized
four AI-driven workloads, Unet3D, Resnet50, MuMMI, and
Microsoft Megatron Deepspeed, on different large-scale HPC
machines, demonstrating that the DFTracer can be run on
various HPC software stacks efficiently.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344; and under the
auspices of the National Cancer Institute (NCI) by Frederick
National Laboratory for Cancer Research (FNLCR) under
Contract 75N91019D00024. This research used resources of
the Argonne Leadership Computing Facility, a U.S. Depart-
ment of Energy (DOE) Office of Science user facility at
Argonne National Laboratory and is based on research sup-
ported by the U.S. DOE Office of Science-Advanced Scientific
Computing Research Program, under Contract No. DE-AC02-
06CH11357. Office of Advanced Scientific Computing Re-
search under the DOE Early Career Research Program. Also,
This material is based upon work partially supported by LLNL
LDRD 23-ERD-045 and 24-SI-005. LLNL-CONF-857447.

REFERENCES

[1] F. Chowdhury, Y. Zhu, F. Di Natale, A. Moody, E. Gonsiorowski,
K. Mohror, and W. Yu, “Emulating I/O Behavior in Scientific Workflows
on High Performance Computing Systems,” in 2020 IEEE/ACM Fifth
International Parallel Data Systems Workshop, Nov. 2020, pp. 34–39.

[2] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild, K. Willcox, and S. Lee,
“Workshop Report on Basic Research Needs for Scientific Machine
Learning: Core Technologies for Artificial Intelligence,” DOE, Tech.
Rep., Feb. 2019.

[3] “Generalizable coordination of large multiscale workflows | Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis.” [Online]. Available: https:
//dl.acm.org/doi/abs/10.1145/3458817.3476210

[4] J. Y. Moon, F. Di Natale, H. I. Ingolfsson, H. Bhatia, and J. R. Chavez,
“Multiscale Machine-Learned Modeling Infrastructure RAS,” Lawrence
Livermore National Lab. (LLNL), Livermore, CA (United States), Tech.
Rep. MuMMI RAS, Sep. 2021.

[5] S. A. Jacobs, M. Tanaka, C. Zhang, M. Zhang, S. L. Song, S. Ra-
jbhandari, and Y. He, “DeepSpeed Ulysses: System Optimizations for
Enabling Training of Extreme Long Sequence Transformer Models,”
Oct. 2023, arXiv:2309.14509 [cs].

[6] N. Siva, “1000 genomes project,” Nature Biotechnology, vol. 26, no. 3,
pp. 256–257, Mar. 2008, publisher: Nature Publishing Group. [Online].
Available: https://github.com/pegasus-isi/1000genome-workflow

[7] H. Devarajan and K. Mohror, “Extracting and characterizing I/O behav-
ior of HPC workloads.” Heidelberg, Germany: IEEE, Sep. 2022.

[8] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath,
“DLIO: A Data-Centric Benchmark for Scientific Deep Learning Appli-
cations,” in 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), May 2021, pp. 81–91.

[9] H. Devarajan, A. Kougkas, H. Zheng, V. Vishwanath, and X.-H. Sun,
“Stimulus: Accelerate Data Management for Scientific AI applications
in HPC,” in 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), May 2022, pp. 109–118.

[10] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: Performance In-
trospection for HPC Software Stacks,” in SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2016, pp. 550–560, iSSN: 2167-4337.

[11] “flux-framework/PerfFlowAspect,” Oct. 2023, original-date: 2021-02-
12T01:53:39Z. [Online]. Available: https://github.com/flux-framework/
PerfFlowAspect

[12] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular HPC I/O Characterization with Darshan,” in 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT), Nov. 2016, pp.
9–17.

[13] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient Parallel I/O Tracing and Analysis,” in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2020, pp. 1–8.

[14] H. Jagode, J. Dongarra, S. Alam, J. Vetter, W. Spear, and A. D. Malony,
“A Holistic Approach for Performance Measurement and Analysis for
Petascale Applications,” in Computational Science – ICCS 2009, ser.
Lecture Notes in Computer Science, G. Allen, J. Nabrzyski, E. Seidel,
G. D. van Albada, J. Dongarra, and P. M. A. Sloot, Eds. Berlin,
Heidelberg: Springer, 2009, pp. 686–695.

[15] B. Mohr, V. Voevodin, J. Giménez, E. Hagersten, A. Knüpfer, D. A.
Nikitenko, M. Nilsson, H. Servat, A. Shah, F. Winkler, F. Wolf, and
I. Zhukov, “The HOPSA Workflow and Tools,” in Tools for High
Performance Computing 2012, A. Cheptsov, S. Brinkmann, J. Gracia,
M. M. Resch, and W. E. Nagel, Eds. Berlin, Heidelberg: Springer,
2013, pp. 127–146.

[16] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, “An
algebra for cross-experiment performance analysis,” in International
Conference on Parallel Processing, 2004. ICPP 2004., Aug. 2004,
pp. 63–72 vol.1, iSSN: 0190-3918. [Online]. Available: https:
//ieeexplore.ieee.org/document/1327905

[17] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms and
Task Scheduling,” Jan. 2015, pp. 126–132.

[18] M. A. Breddels and J. Veljanoski, “Vaex: Big Data exploration in the
era of Gaia,” Astronomy & Astrophysics, vol. 618, p. A13, Oct. 2018,
arXiv:1801.02638 [astro-ph].

[19] “Scaling Interactive Data Science Transparently with Modin | EECS
at UC Berkeley.” [Online]. Available: https://www2.eecs.berkeley.edu/
Pubs/TechRpts/2018/EECS-2018-191.html

[20] I. Yildirim, H. Devarajan, A. Kougkas, X.-H. Sun, and K. Mohror,
“IOMax: Maximizing Out-of-Core I/O Analysis Performance on HPC
Systems,” in Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12–17, 2023, Denver, CO, USA, Nov. 2023.

[21] F. Chowdhury, F. Di Natale, A. Moody, K. Mohror, and W. Yu,
“DFMan: A Graph-based Optimization of Dataflow Scheduling on High-
Performance Computing Systems,” in 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2022, pp. 368–
378, iSSN: 1530-2075.

[22] H. Devarajan, I. Yildirim, H. Zheng, R. Andrew, and k. velusamy,
“hariharan-devarajan/dftracer: Release v1.0.0,” Jun. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.12541941

[23] A. Objelean, “JSON Compression Algorithms,” 2011, accepted:
2019-11-08T10:35:57Z ISBN: 9789975451741 Publisher: Technical
University of Moldova. [Online]. Available: http://repository.utm.md/
handle/5014/6418

[24] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A Joint Per-
formance Measurement Run-Time Infrastructure for Periscope,Scalasca,
TAU, and Vampir,” in Tools for High Performance Computing 2011,
H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Berlin,
Heidelberg: Springer, 2012, pp. 79–91.

[25] “The Tau Parallel Performance System - Sameer S. Shende, Allen D.
Malony, 2006.”

[26] M. R. Collette, I. R. Corey, and J. R. Johnson, “High Performance Tools
And Technologies,” LLNL, Tech. Rep. UCRL-TR-209289, Jan. 2005.

[27] Z. Zhu, S. Neuwirth, and T. Lippert, “A Comprehensive I/O Knowledge
Cycle for Modular and Automated HPC Workload Analysis,” in 2022
IEEE International Conference on Cluster Computing (CLUSTER), Sep.
2022, pp. 581–588, iSSN: 2168-9253.

[28] C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna,
R. Sisneros, and K. Chadalavada, “DXT: Darshan eXtended Tracing.”

[29] J. L. Bez, H. Ather, and S. Byna, “Drishti: Guiding End-Users in the
I/O Optimization Journey,” in 2022 IEEE/ACM International Parallel
Data Systems Workshop (PDSW), Nov. 2022, pp. 1–6.

[30] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
R. Thakur, and J. L. Träff, “MPI on a Million Processors,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
ser. Lecture Notes in Computer Science, M. Ropo, J. Westerholm, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer, 2009, pp. 20–30.

[31] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional,
Jul. 2010, google-Books-ID: 49OmnOmTEtQC.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[33] “PyDarshan Documentation — PyDarshan 3.3.1.0 documentation.”
[Online]. Available: https://www.mcs.anl.gov/research/projects/darshan/
docs/pydarshan/index.html

[34] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun, “HCompress:
Hierarchical Data Compression for Multi-Tiered Storage Environments,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2020, pp. 557–566, iSSN: 1530-2075.

[35] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-
aware multi-tiered distributed I/O buffering system,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
Association for Computing Machinery, Jun. 2018, pp. 219–230.

[36] H. Devarajan, A. Kougkas, and X.-H. Sun, “HFetch: Hierarchical Data
Prefetching for Scientific Workflows in Multi-Tiered Storage Environ-
ments,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2020, pp. 62–72, iSSN: 1530-2075.

[37] A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh, and
X.-H. Sun, ChronoLog: A Distributed Shared Tiered Log Store with
Time-based Data Ordering, Mar. 2021.

[38] A. Kougkas, H. Devarajan, and X.-H. Sun, “IRIS | Proceedings of
the 2018 International Conference on Supercomputing.” ACM, pp.
33–42. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3205289.
3205322

[39] D. Poliakoff and M. Legendre, “GOTCHA,” Lawrence Livermore
National Lab. (LLNL), Livermore, CA (United States), Tech.
Rep. GOTCHA; 005263WKSTN00, Mar. 2017. [Online]. Available:
https://www.osti.gov/biblio/1356296

[40] “Automatic C library wrapping Ctypes from the trenches.” [Online].
Available: https://mro.massey.ac.nz/handle/10179/4501

[41] PyTorch, “ResNet-50 examples/imagenet/main.py at main ·
pytorch/examples.” [Online]. Available: https://github.com/pytorch/
examples/blob/main/imagenet/main.py

[42] “Lassen High Performance Computing.” [Online]. Available: https:
//hpc.llnl.gov/hardware/platforms/lassen

[43] “Corona | HPC @ LLNL.” [Online]. Available: https://hpc.llnl.gov/
hardware/compute-platforms/corona

[44] “Ruby | HPC @ LLNL.” [Online]. Available: https://hpc.llnl.gov/
hardware/compute-platforms/ruby

[45] “Polaris | Argonne Leadership Computing Facility.” [Online]. Available:
https://www.alcf.anl.gov/polaris

[46] F. Turk, M. Luy, and N. Barisci, “Comparison of Unet3D Models
for Kidney Tumor Segmentation,” Jan. 2020. [Online]. Available:
https://www.preprints.org/manuscript/202001.0314/v1

[47] Kidney, “2019 Kidney Tumor Segmentation Challenge,” 2019. [Online].
Available: https://kits19.grand-challenge.org/

[48] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” Mar. 2020, arXiv:1909.08053 [cs].

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. Overview of Contributions and Artifacts

A. Paper’s Main Contributions
C1 Design of DFTracer for capturing both

application-code and system-call level events
simultaneously from AI-driven workflows;

C2 Building of a novel trace format that optimizes for
low-overhead capture and uses compression for
space reduction and custom indices for efficient
analysis; and

C3 Development of DFAnalyzer to demonstrate an
efficient pipeline to load DFTracer files and en-
able distributed I/O analysis for AI-driven work-
loads.

B. Computational Artifacts

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 and C2 Table 1
A2 C1 and C2 Figure 3

A3 C1 and C2 Figure 4

A4 C2 Figure 5
A5 C3 Figure 6
A6 C3 Figure 7
A7 C3 Figure 8

A8 C3 Figure 9

II. Artifact Identification

A. Hardware
1) Corona: The cluster is hosted at Lawrence Liver-

more National Laboratory. The cluster consists of 121
nodes, each node 48 core AMD Rome processor, 256
memory, and eight AMD MI50 GPUs per node.

2) Lassen: The cluster is hosted at Lawrence Livermore
National Laboratory. The cluster consists of 256 nodes;
each node has two 20-core Power9 processors, 256 memory,
and four NVIDIA V100 GPUs per node.

3) Ruby: The cluster is hosted at Lawrence Livermore
National Laboratory. The cluster consists of 1,512 nodes;
each node has two 28-core Xeon processors and 192 GB of
memory.

4) Polaris: The cluster is hosted at Argonne National
Laboratory. The cluster consists of 560 nodes, each with
a 32-core AMD EPYC processor, 512 memory, and four
NVIDIA A100 GPUs per node.

B. Software Dependencies

Required software for these tests including baseline in
spack yaml format:

1) gcc@10.3.1
2) scorep@8.3
3) darshan-runtime@3.4.4 and darshan-util@3.4.4
4) recorder@pilgrim
Pip Dependencies for these tests are
1) pydftracer[dfanalyzer]==1.0.2
2) recorder-viz
3) darshan
Code Repository for this tool is

https://github.com/hariharan-devarajan/dftracer.git
release v1.0.2. The DOI for the repository is
https://doi.org/10.5281/zenodo.12555517.
Install Spack on Corona Similar instructions for other
machines

#!/bin/bash
git clone git@github.com:spack/spack.git
source spack/share/spack/setup-env.sh
spack external find # to find system packages.
module load gcc/10.3.1 # load correct compilers
spack compiler find

Listing 1. bash version

Install Tools

#!/bin/bash
spack install scorep@8.3
spack install darshan-runtime@3.4.4
spack install darshan-util@3.4.4
spack install recorder@pilgrim

Listing 2. bash version

Install Analysis tools for Recorder, Score-p and
Darshan DXT

#!/bin/bash
source ./venv/bin/activate
pip install darshan recorder-viz otf2

Listing 3. bash version

Install DFTracer and DFAnalyzer

#!/bin/bash
module load python/3.9.6
python -m venv ./venv
source venv/bin/activate
pip install pydftracer[dfanalyzer]==1.0.2

Listing 4. bash version

C. Computational Artifact A1

Relation To Contributions
The motivation behind designing DFTracer. Perfor-

mance (Contribution 1) and Trace Size (Contribution 2)

Expected Results
The workload generated a total of 1.1M I/O events.

However, Score-P only captures 68K events, Darshan DXT
captures 189 events, and Recorder captures 1,389 events.
These tracers capture I/O events on the master process.
However, in this PyTorch workload, the master process
on the GPU dynamically spawns worker processes that
perform the actual reading for the workload. If we change
the AI workload to do I/O on the master process, it
removes I/O parallelism but it can be now traced by
these tools. In this case, we see that load time for all
solutions linearly increase with number of events due to
lack of parallelization in reading resulting in load times
for 100M events to be 6.1 hr, 3.3hr, and greater than 12
hr for Score-P, Darshan DXT, and Recorder respectively.
Additionally, we see that the trace size of Darshan DXT
is smallest among existing solution. We can present some
results for DFTracer for this case. It can capture all 1.1
M events at a low overhead of 7%. Additionally, the load
time for DFTracer with 40 analysis threads is 3.4 minutes
as compared to Darshan DXT which was 3.1hr with a trace
size 14% smaller than Darshan DXT.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 5 minute.

Artifact Setup (incl. Inputs)
Hardware: Corona as described in Section II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has

to be compiled with GCC 10.3.1 with the software as
provided on Section II-B. The test can be executed by
using a ctest configuration provided in the repository.

Artifact Execution
The test script create a scale specific build for ctest

configuration. Then it runs the ctest as shown in AE.

Artifact Analysis (incl. Outputs)
The reported time for I/O for each tool with respect to

baseline would provide the runtime overhead.

D. Computational Artifact A2

Relation To Contributions
Internal evaluation to determine overhead of DFTracer

for C code. Performance (Contribution 1) and Trace Size
(Contribution 2)

Expected Results
We observe that the average overhead in Darshan DXT

is 21%, Recorder is 16%, and Score-P is 20%. The DF-
Tracer (DFT) collects only the event data such as open,
read, and close without additional information such as
size and file name. This minimalistic tracing incurs an
overhead of 5% over the baseline at an average and is faster
than Darshan DXT by 15%, Recorder by 10%, and Score-
P by 15%. The DFTracer with contextual information
(DFT Meta) incurs an overhead of 9% and is 3% slower
than the baseline DFTracer. DFT Meta is still faster than
Darshan DXT by 11%. The low overhead of the DFTracer
comes from the efficient building of JSON events through
sprintf and buffered data writing into file-per-process
log files. In the case of the DFTracer with contextual
information, we dump a map of additional information as
a part of the event into a C string using sprintf . We also
observe that the size of tracing logs from DFTracer and
Darshan DXT increases as we scale the number of unique
operations. However, the DFTracer captures more events
than Darshan as it captures more metadata I/O calls, such
as mkdir and opendir. The number of events between
Score-P and Recorder are similar to DFTracer. Even with
the extra calls captured, the compressed DFTracer trace
file size is smaller than the binary format of the Darshan
DXT tracer by 18-30%, Score-P tracer by up to 6.45x, and
Recorder by up to 2.44x.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 1 minute.

Artifact Setup (incl. Inputs)
Hardware: Corona Hardware as described in Sec-

tion II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has

to be compiled with GCC 10.3.1 with the software as
provided on Section II-B. The test can be executed by
using a ctest configuration provided in the repository.

Artifact Execution
The test script create a scale specific build for ctest

configuration. Then it runs the ctest as shown in AE.

Artifact Analysis (incl. Outputs)
The reported time for I/O for each tool with respect to

baseline would provide the runtime overhead.

E. Computational Artifact A3

Relation To Contributions
Internal evaluation to determine the overhead of DF-

Tracer for Python code. Performance (Contribution 1) and
Trace Size (Contribution 2)

Expected Results

We observe that the Python benchmark for the same
operations is 5-9x slower. This results in a smaller tracing
overhead for Darshan DXTand DFTracer for the same
number of operations. In this benchmark, the Darshan
DXT tracing is 16% slower than the baseline. The DF-
Tracer (DFT) incurs an overhead of 1% at an average.
This is faster than Darshan DXT by 1.19x, Recorder by
1.52x, and Score-P by 1.31x. On the other hand, the
DFTracer with contextual information (DFT Meta) incurs
an overhead of 7% over the baseline and is 6% slower
than the DFTracer baseline. DFT Meta is still faster than
Darshan DXT by 1.13x, Recorder by 1.44x, and Score-P
by 1.25x. Additionally, the performance difference between
Darshan DXT and DFTracer is consistent with the obser-
vations of the C++ benchmark. Like the C++ workloads,
DFTracer traces are smaller than Darshan DXT by 18-
30%, Recorder by 3.59x, and Score-P by 7.18x. The trace
size for Score-P is bigger as the OTF format has different
events for start and end. Also, Darshan DXT and Score-
P store additional high-level aggregated metrics, which
increases their trace size by approximately 6KB and 16KB,
respectively. However, for DFAnalyzer, the indexed GZip
reduces the file size without compromising the reading
cost.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact on the
CPU is 1 minute for all scales.

Artifact Setup (incl. Inputs)

Hardware: Corona Hardware as described in Sec-
tion II-A.

Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has

to be compiled with GCC 10.3.1 with the software as
provided on Section II-B. The test can be executed by
using a ctest configuration provided in the repository.

Artifact Execution

The test script create a scale specific build for ctest
configuration. Then it runs the ctest as shown in AE.

Artifact Analysis (incl. Outputs)

The reported time for I/O for each tool with respect to
baseline would provide the runtime overhead.

F. Computational Artifact A4

Relation To Contributions

Internal evaluation to determine the load time of DF-
Tracer format.

Expected Results
We observe that the default case for loading all events

through PyDarshan into a Pandas dataframe is costly and
does not parallelize well. Using Dask Bags to load the
Darshan DXT data parallelizes the dataframe generation,
improving the analysis performance. Specifically, in most
cases, DFAnalyzer is faster than Darshan, Score-P, and
Recorder. In some cases, DFAnalyzer is similar or slightly
slower for less number of workers than Recorder and Score-
P. However, adding more Dask workers does not help scale
the analysis. Whereas the DFAnalyzer scales linearly with
multiple workers. In the case of the DFAnalyzer, we see
that it is faster or similar to all analysis tools. Specifically,
DFAnalyzer is faster than Darshan DXT by 3.3-3.7x,
Recorder by 1.07-1.85x, and Score-P by 1.02-5.22x. The
DFAnalyzer parallelizes the trace reading into batches of
1MB reads, creating more than a thousand parallelizable
tasks for loading the data. This parallelization helps the
DFAnalyzer load the data quickly into memory for analy-
sis. Here, as DFAnalyzer, Darshan, Recorder, and Score-P
use Dask and extract similar information, the performance
difference in loading the dataset comes from reading the
trace events out from these trace formats. Additionally,
the indexed GZip allows for parallelizing the trace files
among workers, which significantly helps the scalability of
our solution. Finally, all existing solutions do not scale well
with increasing workers. Thus, loading large multi-million
event trace files for larger datasets becomes extremely
expensive. With DFAnalyzer we can handle larger traces
by using more resources to parallelise the trace file and
therefore enable large-scale analysis of these workloads.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 1 minute for all scales.

Artifact Setup (incl. Inputs)
Hardware: Corona Hardware as described in Sec-

tion II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has

to be compiled with GCC 10.3.1 with the software as
provided on Section II-B. The test can be executed by
using a ctest configuration provided in the repository.

Artifact Execution
The test script creates a scale-specific build for the ctest

configuration and then runs the ctest as shown in AE.

Artifact Analysis (incl. Outputs)
The reported time for I/O for each tool with respect to

baseline would provide the load time.

G. Computational Artifact A5

Relation To Contributions
Running Unet3D and analyzing performance

Expected Results
The DFAnalyzer creates a detailed, high-level charac-

terization summary of workloads. In the summary pro-
vided by DFAnalyzer, we observe that the read workers
spawned by PyTorch are dynamic processes with a life-
time of an epoch. Every epoch, these workers are killed
and spawned again for the next epoch, resulting in over
2300 processes spawned in the application’s lifetime. The
characterization shows that the workload accessed 168 files
with a uniform transfer size of 4MB using read POSIX
API. Additionally, we notice 732K read calls within the
workload but 1.41× more lseek64 calls on the dataset.
This behavior is consistent with loading Numpy array files
using numpy.open API. Overall, the execution time of the
application was 105 seconds, the compute phase ran for
22 seconds, and the last I/O call ended at 102 seconds.
If we only look at application-code level calls, then the
I/O calls issued using Numpy API take 81 seconds, and
overlaps the application’s compute time for 59 seconds,
leaving an unoverlapped I/O time of 22 seconds. This
behavior from the application-code level suggests an I/O
bottleneck within the workload. When we look at the
system calls executed by this application, we see that
POSIX calls take 52 seconds out of 81 seconds. Even in this
case, 50 seconds of I/O time is overlapped with the com-
pute phase. This complete picture of application-code and
system-call level information suggests that the bottleneck
is the Python layer as numpy.open spends 55% more time
after performing I/O. This is evident from the perceived
bandwidth from the application as well. We observe that
the peak bandwidth of POSIX I/O calls is 180GB/s vs
84GB/s for application-level I/O calls. The application
performs around 3.5 MB transfers per timesteps to the file
system. Additionally, out of the 52 seconds of I/O time, the
application spends 99% on read, 0.3% on open64, 0.3% on
close, and the rest on metadata calls. This demonstrated
that multi-level analysis can give insights and verification
of the behavior seen by the application.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 5 minute.

Artifact Setup (incl. Inputs)
Hardware: Ruby Cluster Hardware as described in Sec-

tion II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has

to be compiled with GCC 10.3.1 with the software as
provided on Section II-B. This app has to be installed from
DLIO Benchmark and executed.

Artifact Execution
We have to first generate the dataset and then run DLIO

training for Unet3D workload.

Artifact Analysis (incl. Outputs)
The trace files from DFTracers have to be analyzed

using DFAnalyzer using our notebook.

H. Computational Artifact A6

Relation To Contributions
Running Resnet50 and analyzing performance

Expected Results
Using the DFAnalyzer’s high-level summarization, we

observe that the read workers spawned by PyTorch are
dynamic processes with a lifetime of an epoch. Every
epoch, there are eight workers per process that read the
dataset from the parallel file system. The characterization
shows that the workload accessed 1.2M files with a normal
distribution of transfer size with the mean at 56KB and
the maximum file size of 4MB using read POSIX API.
Additionally, we notice 1M read calls within the workload
but 3× more lseek64 calls on the dataset. This behavior is
consistent with loading JPEG images using Pillow.open
API. Overall, the execution time of the application was 761
seconds and the compute phase ran for for 134 seconds.
If we only look at application-code level calls, then the
I/O calls issued using the Pillow library take 755 seconds,
and does not overlap the application’s compute time for
only 134 seconds, leaving an unoverlapped I/O time of
623 seconds. This behavior from the application-code level
suggests an I/O bottleneck within the workload. When
we look at the system calls executed by this application,
we see that POSIX calls take 605 seconds out of 761
seconds. Even in this case, 135 seconds of I/O time is
overlapped. If we look at I/O time, the application-level
I/O calls represent the time for which the computation
waits to get the next batch of images. Whereas POSIX
I/O calls represent the system calls for performing I/O.
Additionally, we notice a low bandwidth for POSIX I/O
calls as the workload only uses one compute node and
reads images with a small transfer size of 56KB average.
This complete picture of application code and system-
call level information suggests that the bottleneck is the
POSIX layer. Additionally, out of the 605 seconds of I/O
time, the application spends 99.5% on reading and the rest
on metadata calls.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 15 minute.

Artifact Setup (incl. Inputs)
Hardware: Polaris Cluster Hardware as described in

Section II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has to

be compiled with GCC 8.3.1 with the software as provided
on Section II-B. This app has to be installed from DLIO
Benchmark and executed.

Artifact Execution
We have to first generate the dataset and then run DLIO

training for Resnet50 workload.

Artifact Analysis (incl. Outputs)
The trace files from DFTracers have to be analyzed

using DFAnalyzer using our notebook.

I. Computational Artifact A7

Relation To Contributions
Running MuMMI and analyzing performance

Expected Results
Figure 8 shows the timeline of I/O operations for the

MuMMI workflow. We see that throughout the timeline,
MuMMI performs I/O and achieves an average bandwidth
of 1GB/s with more bandwidth initially than later in the
workflow (Figure 8(a)). This is because the initial part of
the workflow is dominated by the simulation code, which
writes large chunks of data into local tempfs, and then
as the workflow proceeds, the analysis kernel produces
small accesses on these simulation files, which reduces the
bandwidth. This behavior is consistent with the transfer
size timeline where the accesses are large initially and then,
after four hours, are dominated by small accesses from the
analysis kernel (Figure 8(b)).

Using the DFAnalyzer’s high-level summarization (Fig-
ure 8(c)), we observe that the workflow has 4M events in 12
hours and spends 372 seconds performing I/O. Overall, the
workflow writes 18GB of data and reads 300GB of data.
However, the read and write operations only contribute to
1% of the overall I/O time. One of the major contributions
to I/O time is metadata calls, such as the opening of files
(open64) and checking statistics of files (xstat64). The
open calls contribute to 70% of the I/O time, and the
xstat64 call contributes to 20% of the I/O time. Overall,
the workflow creates 22,949 processes, and therefore, all
the traces should be analyzed to get a complete picture
of the workflow. Additionally, the read calls have a wide
distribution of requests, from small 2KB requests for
analysis to large 500MB requests for model reading. This
makes doing analysis on such a diverse dataset challenging,
and we need to look at the distribution and not the overall
average

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 12 hours.

Artifact Setup (incl. Inputs)
Hardware: Lassen Cluster Hardware as described in

Section II-A.
Software: Software as described in Section II-B.
Installation and Deployment: The DFTracer code has to

be compiled with GCC 8.3.1 with the software as provided
on Section II-B. The MuMMI software is closed source and
only available on LLNL clusters.

Artifact Execution
We need to first setup the environment using spack for

MuMMI. Then we need access to the trained MuMMI
model for the workflow. Then we need to use flux scheduler
to coordinate the workflow on LSF scheduler.

Artifact Analysis (incl. Outputs)
The trace files from DFTracers have to be analyzed

using DFAnalyzer using our notebook.

J. Computational Artifact A8

Relation To Contributions
Running Megatron Deepspeed and analyzing perfor-

mance

Expected Results
Figure 9 demonstrates the I/O behavior of the Megatron

Deepspeed workload. In this workload, we see that the
application does multi-megabyte I/O throughout the time-
line of the application (Figure 9(b)). This is dominated
by checkpointing writes. Because of large transfer sizes,
the aggregate band- width of the workload is between 10-
50GB/s. As the time progresses for the same amount of
I/O, we see a higher I/O time. We hypothesize that this
was due to the job spanning over 12 hours and that the
system was more busy towards the end of the job, which
was during the middle of the night.

Using the DFAnalyzer’s high-level summarization (Fig-
ure 9(c)), we observe that the dataset is relatively small
and is read using a single worker thread by the PyTorch
framework. However, during checkpointing, it writes a
total of 4TB of data across eight checkpoints for 8K steps.
The application runs for a total time of 3530 seconds,
with the checkpointing taking 103 seconds overall. This
application was not integrated with application code level
calls, so we only have system I/O calls, and we see that
the application does 40K write calls with a mean and
median transfer size of 110MB and 12MB, respectively.
It spends 95% of its I/O time on checkpointing, and only
2.5% of its I/O time is spent in reading the dataset. Upon
introspection of the checkpoint files produced, we ob- serve
that the majority of I/O is performed while checkpointing
the optimization state (60% of write I/O), followed by
layer parameters (30% of I/O time), and the rest by model
parameters.

Expected Reproduction Time (in Minutes)
The expected computational time of this artifact on the

CPU is 12 hours.

Artifact Setup (incl. Inputs)
Hardware: Lassen Cluster Hardware as described in

Section II-A.
Software: Software as described in Section II-B.

Installation and Deployment: The DFTracer code has to
be compiled with GCC 8.3.1 with the software as provided
on Section II-B. The Megatron Deepspeed software is
closed-source and only available on LLNL clusters.

Artifact Execution
We need to setup Megatron deepspeed using OpenCE

packages in Lassen and then install deepspeed depen-
dencies. Then DFTracer code has to be integrated using
environment variables to trace I/O calls.

Artifact Analysis (incl. Outputs)
The trace files from DFTracers have to be analyzed

using DFAnalyzer using our notebook.

Artifact Evaluation (AE)
Setting up the environment

You should source these variables before running the
below scripts

export PROJECT_DIR=<PATH to DFTracer clone>

Listing 5. bash version

A. Computational Artifact A1

Artifact Setup (incl. Inputs)
The DFTracer code has to be compiled with GCC 10.3.1

with the software as provided on Section II-B. The test can
be executed by using a ctest configuration provided in the
repository.

Artifact Execution
The workflow for running this artifact is a) Generate

dataset on Unet3D, b) Profile with Darshan DXT, c)
Profile with Recorder, d) Profile with Score-P, and Profile
with DFTracer
Generate Unet3D dataset

#!/bin/bash
mkdir -p ${PFS}/dlio
export PFS=<PATH_TO_PFS>
Generate the dataset
srun -N 1 --tasks-per-node=8 dlio_benchmark

↪→ workload=unet3D ++workload.dataset.
↪→ data_folder=${PFS}/dlio ++workload.
↪→ workflow.generate_data=True ++workload.
↪→ workflow.train=False

Listing 6. bash version

Run Unet3D with Darshan DXT

#!/bin/bash
export DARSHAN_ENABLE_NONMPI=1
export DARSHAN_LOG_DIR=./darshan_logs
export dftracer_ENABLE=0
export DXT_ENABLE_IO_TRACE=1
export DARSHAN_LIB=‘spack locate -i darshan-

↪→ runtime@3.4.4‘/lib/libdarshan.so
srun -N 1 --tasks-per-node=8 export=LD_PRELOAD=

↪→ $DARSHAN_LIB dlio_benchmark workload=
↪→ unet3D ++workload.dataset.data_folder=${
↪→ PFS}/dlio ++workload.workflow.
↪→ generate_data=True ++workload.workflow.
↪→ train=False

Listing 7. bash version

Run Unet3D with Recorder

#!/bin/bash
export dftracer_ENABLE=0
export RECORDER_LIB=‘spack locate -i

↪→ recorder@pilgrim‘/lib/librecorder.so

srun -N 1 --tasks-per-node=8 export=LD_PRELOAD=
↪→ $RECORDER_LIB dlio_benchmark workload=
↪→ unet3D ++workload.dataset.data_folder=${
↪→ PFS}/dlio ++workload.workflow.
↪→ generate_data=True ++workload.workflow.
↪→ train=False

Listing 8. bash version

Run Unet3D with Score-p

export dftracer_ENABLE=0
source ./venv/bin/activate
git clone git+https://github.com/argonne-lcf/

↪→ dlio_benchmark.git
srun -N 1 --tasks-per-node=8 python -m scorep

↪→ dlio_benchmark/dlio_benchmark/main.py
↪→ workload=unet3D ++workload.dataset.
↪→ data_folder=${PFS}/dlio ++workload.
↪→ workflow.generate_data=True ++workload.
↪→ workflow.train=False

Listing 9. bash version

Run Unet3D with DFTracer

export dftracer_ENABLE=1
srun -N 1 --tasks-per-node=8 dlio_benchmark

↪→ workload=unet3D ++workload.dataset.
↪→ data_folder=${PFS}/dlio ++workload.
↪→ workflow.generate_data=True ++workload.
↪→ workflow.train=False

Listing 10. bash version

Artifact Analysis (incl. Outputs)
Except for DFTracer, none of the tracing tools see I/O

calls from workers. To validate this, we can disable python
multi-processing. This will significantly slow down the
workload but we can see I/O calls in all tracing tools.

add + + workload.reader.read threads = 0 to Dar-
shan, Recorder, and Score-p.

B. Computational Artifact A2

Artifact Setup (incl. Inputs)
The DFTracer code has to be compiled with GCC 10.3.1

with the software as provided on Section II-B. The test can
be executed by using a ctest configuration provided in the
repository.

Artifact Execution
The workflow for this artifact is run the following scripts

to capture the baseline (that is no tracing) and compare
overheads against Darshan DXT, Recorder, Score-P, and
DFTracer
Baseline

srun -N 1 --ntasks-per-node 40 ./build/bin/
↪→ overhead "${PFS}/dftracer_data" "1000" "
↪→ 4096"

srun -N 2 --ntasks-per-node 40 ./build/bin/
↪→ overhead "${PFS}/dftracer_data" "1000" "
↪→ 4096"

srun -N 4 --ntasks-per-node 40 ./build/bin/
↪→ overhead "${PFS}/dftracer_data" "1000" "
↪→ 4096"

srun -N 8 --ntasks-per-node 40 ./build/bin/
↪→ overhead "${PFS}/dftracer_data" "1000" "
↪→ 4096"

Listing 11. bash version

Darshan DXT

export DARSHAN_ENABLE_NONMPI=1
export dftracer_ENABLE=0
export DXT_ENABLE_IO_TRACE=1

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/c-node1

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 1 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=‘spack
↪→ location -I darshan-runtime@3.4.4‘/lib/
↪→ libdarshan.so "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/c-node2

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 2 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=‘spack
↪→ location -I darshan-runtime@3.4.4‘/lib/
↪→ libdarshan.so "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/c-node4

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 4 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=‘spack
↪→ location -I darshan-runtime@3.4.4‘/lib/
↪→ libdarshan.so "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/c-node8

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 8 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=‘spack
↪→ location -I darshan-runtime@3.4.4‘/lib/
↪→ libdarshan.so "${PFS}/dftracer_data" "
↪→ 1000" "4096"

Listing 12. bash version

Recorder

export dftracer_ENABLE=0
export RECORDER_LIB=‘spack locate -i

↪→ recorder@pilgrim‘/lib/librecorder.so

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/c-node1

mkdir -p $RECORDER_TRACES_DIR
srun -N 1 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/c-node2

mkdir -p $RECORDER_TRACES_DIR
srun -N 2 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/c-node4

mkdir -p $RECORDER_TRACES_DIR
srun -N 4 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/c-node8

mkdir -p $RECORDER_TRACES_DIR
srun -N 8 --ntasks-per-node 40 ./build/bin/

↪→ overhead --export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

Listing 13. bash version

Scorep

mkdir -p ${PROJECT_DIR}/score-p_logs

srun -N 1 --ntasks-per-node 40 ./build_scorep/
↪→ bin/overhead export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/c-node1

srun -N 2 --ntasks-per-node 40 ./build_scorep/
↪→ bin/overhead export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/c-node2

srun -N 4 --ntasks-per-node 40 ./build_scorep/
↪→ bin/overhead export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/c-node4

srun -N 8 --ntasks-per-node 40 ./build_scorep/
↪→ bin/overhead export=LD_PRELOAD=
↪→ $RECORDER_LIB "${PFS}/dftracer_data" "
↪→ 1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/c-node8

Listing 14. bash version

DFTracer

export DFTRACER_SO=${PROJECT_DIR}/build/lib/
↪→ libdftracer_preload.so

export DFTRACER_DATA_DIR=${PROJECT_DIR}/build/
↪→ test/paper/data

export DFTRACER_INIT=PRELOAD
export DFTRACER_ENABLE=1
export DFTRACER_TRACE_COMPRESSION=1
export DFTRACER_INC_METADATA=0
export DFTRACER_TRACE_ALL_FILES=1
export DFTRACER_TRACE_TIDS=0
export DFTRACER_BIND_SIGNALS=0

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/c-node1/overhead

srun -N 1 --ntasks-per-node 40 ./build/bin/
↪→ overhead export=LD_PRELOAD=$DFTRACER_SO "
↪→ ${PFS}/dftracer_data" "1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/c-node2/overhead

srun -N 2 --ntasks-per-node 40 ./build/bin/
↪→ overhead export=LD_PRELOAD=$DFTRACER_SO "
↪→ ${PFS}/dftracer_data" "1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/c-node4/overhead

srun -N 4 --ntasks-per-node 40 ./build/bin/
↪→ overhead export=LD_PRELOAD=$DFTRACER_SO "
↪→ ${PFS}/dftracer_data" "1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/c-node8/overhead

srun -N 8 --ntasks-per-node 40 ./build/bin/
↪→ overhead export=LD_PRELOAD=$DFTRACER_SO "
↪→ ${PFS}/dftracer_data" "1000" "4096"

Listing 15. bash version

Artifact Analysis (incl. Outputs)
The reported time for I/O for each tool in comparison

to the baseline would provide the overhead.

C. Computational Artifact A3

Artifact Setup (incl. Inputs)
The DFTracer code has to be compiled with GCC 10.3.1

with the software as provided on Section II-B. The test can
be executed by using a ctest configuration provided in the
repository.

Artifact Execution
The workflow for this artifact is run the following scripts

to capture the baseline (that is no tracing) and compare
overheads against Darshan DXT, Recorder, Score-P, and
DFTracer
Baseline

srun -N 1 --ntasks-per-node 40 python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

srun -N 2 --ntasks-per-node 40 python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

srun -N 4 --ntasks-per-node 40 python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

srun -N 8 --ntasks-per-node 40 python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

Listing 16. bash version

Darshan DXT
export DARSHAN_ENABLE_NONMPI=1
export DFTRACER_ENABLE=0
export DXT_ENABLE_IO_TRACE=1

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/py-node1

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 1 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=‘spack location -I darshan-
↪→ runtime@3.4.4‘/lib/libdarshan.so python $
↪→ {PROJECT_DIR}/test/paper/overhead.py "
↪→ darshan_overhead_py" "${PFS}/
↪→ dftracer_data" "1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/py-node2

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 2 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=‘spack location -I darshan-
↪→ runtime@3.4.4‘/lib/libdarshan.so python $
↪→ {PROJECT_DIR}/test/paper/overhead.py "
↪→ darshan_overhead_py" "${PFS}/
↪→ dftracer_data" "1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/py-node4

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 4 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=‘spack location -I darshan-
↪→ runtime@3.4.4‘/lib/libdarshan.so python $
↪→ {PROJECT_DIR}/test/paper/overhead.py "
↪→ darshan_overhead_py" "${PFS}/
↪→ dftracer_data" "1000" "4096"

export DARSHAN_LOG_DIR=${PROJECT_DIR}/
↪→ darshan_logs/py-node8

mkdir -p ${DARSHAN_LOG_DIR}
srun -N 8 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=‘spack location -I darshan-
↪→ runtime@3.4.4‘/lib/libdarshan.so python $
↪→ {PROJECT_DIR}/test/paper/overhead.py "
↪→ darshan_overhead_py" "${PFS}/
↪→ dftracer_data" "1000" "4096"

Listing 17. bash version

Recorder

export DFTRACER_ENABLE=0
export RECORDER_LIB=‘spack locate -i

↪→ recorder@pilgrim‘/lib/librecorder.so

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/py-node1

mkdir -p $RECORDER_TRACES_DIR
srun -N 1 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=$RECORDER_LIB python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ recorder_overhead_py" "${PFS}/
↪→ dftracer_data" "1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/py-node2

mkdir -p $RECORDER_TRACES_DIR
srun -N 2 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=$RECORDER_LIB python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/py-node4

mkdir -p $RECORDER_TRACES_DIR
srun -N 4 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=$RECORDER_LIB python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

export RECORDER_TRACES_DIR=${PROJECT_DIR}/
↪→ recorder_logs/py-node8

mkdir -p $RECORDER_TRACES_DIR
srun -N 8 --ntasks-per-node 40 --export=

↪→ LD_PRELOAD=$RECORDER_LIB python ${
↪→ PROJECT_DIR}/test/paper/overhead.py "${
↪→ PFS}/dftracer_data" "1000" "4096"

Listing 18. bash version

Scorep

mkdir -p ${PROJECT_DIR}/score-p_logs

srun -N 1 --ntasks-per-node 40 python -m scorep
↪→ --mpp=mpi --io=runtime:posix ${
↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ scorep_overhead_py" "${PFS}/dftracer_data
↪→ " "1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/py-node1

srun -N 2 --ntasks-per-node 40 python -m scorep
↪→ --mpp=mpi --io=runtime:posix ${
↪→ PROJECT_DIR}/test/paper/overhead.py "

↪→ scorep_overhead_py" "${PFS}/dftracer_data
↪→ " "1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/py-node2

srun -N 4 --ntasks-per-node 40 python -m scorep
↪→ --mpp=mpi --io=runtime:posix ${
↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ scorep_overhead_py" "${PFS}/dftracer_data
↪→ " "1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/py-node4

srun -N 8 --ntasks-per-node 40 python -m scorep
↪→ --mpp=mpi --io=runtime:posix ${
↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ scorep_overhead_py" "${PFS}/dftracer_data
↪→ " "1000" "4096"

mv scorep-* ${PROJECT_DIR}/score-p_logs/py-node8

Listing 19. bash version

DFTracer

export DFTRACER_DATA_DIR=${PROJECT_DIR}/build/
↪→ test/paper/data

export DFTRACER_INIT=FUNCTION
export DFTRACER_ENABLE=1
export DFTRACER_TRACE_COMPRESSION=1
export DFTRACER_INC_METADATA=0
export DFTRACER_TRACE_TIDS=0
export DFTRACER_BIND_SIGNALS=0

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/py-node1/overhead

mkdir -p ${DFTRACER_LOG_FILE}
srun -N 1 --ntasks-per-node 40 python ${

↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ df_overhead_py" "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/py-node2/overhead

mkdir -p ${DFTRACER_LOG_FILE}
srun -N 2 --ntasks-per-node 40 python ${

↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ df_overhead_py" "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/py-node4/overhead

mkdir -p ${DFTRACER_LOG_FILE}
srun -N 4 --ntasks-per-node 40 python ${

↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ df_overhead_py" "${PFS}/dftracer_data" "
↪→ 1000" "4096"

export DFTRACER_LOG_FILE=${PROJECT_DIR}/
↪→ dftracer_logs/py-node8/overhead

mkdir -p ${DFTRACER_LOG_FILE}
srun -N 8 --ntasks-per-node 40 python ${

↪→ PROJECT_DIR}/test/paper/overhead.py "
↪→ df_overhead_py" "${PFS}/dftracer_data" "
↪→ 1000" "4096"

Listing 20. bash version

Artifact Analysis (incl. Outputs)
The reported time for I/O for each tool in comparison

to the baseline would provide the overhead.

D. Computational Artifact A4

Artifact Setup (incl. Inputs)
The DFTracer code has to be compiled with GCC 10.3.1

with the software as provided on Section II-B. The test can
be executed by using a ctest configuration provided in the
repository.

Artifact Execution
The workflow for this artifact is to run the follow-

ing scripts to compare the load time of Darshan DXT,
Recorder, Score-P, and DFTracer. Note, the input to these
logs are generated by the C overhead tests.
Darshan DXT using pydarshan and Dask

${PROJECT_DIR}/test/paper/load_darshan.py --
↪→ workers=40 ${PROJECT_DIR}/darshan_logs/c-
↪→ node1/*.darshan

${PROJECT_DIR}/test/paper/load_darshan.py --
↪→ workers=40 ${PROJECT_DIR}/darshan_logs/c-
↪→ node2/*.darshan

${PROJECT_DIR}/test/paper/load_darshan.py --
↪→ workers=40 ${PROJECT_DIR}/darshan_logs/c-
↪→ node4/*.darshan

${PROJECT_DIR}/test/paper/load_darshan.py --
↪→ workers=40 ${PROJECT_DIR}/darshan_logs/c-
↪→ node8/*.darshan

Listing 21. bash version

Recorder using recorder-viz and Dask

${PROJECT_DIR}/test/paper/load_recorder.py --
↪→ workers=40 ${PROJECT_DIR}/recorder_logs/c
↪→ -node1

${PROJECT_DIR}/test/paper/load_recorder.py --
↪→ workers=40 ${PROJECT_DIR}/recorder_logs/c
↪→ -node2

${PROJECT_DIR}/test/paper/load_recorder.py --
↪→ workers=40 ${PROJECT_DIR}/recorder_logs/c
↪→ -node4

${PROJECT_DIR}/test/paper/load_recorder.py --
↪→ workers=40 ${PROJECT_DIR}/recorder_logs/c
↪→ -node8

Listing 22. bash version

Score-P using otf2 and Dask

${PROJECT_DIR}/test/paper/load_scorep.py --
↪→ workers=40 ${PROJECT_DIR}/score-p_logs/c-
↪→ node1

${PROJECT_DIR}/test/paper/load_scorep.py --
↪→ workers=40 ${PROJECT_DIR}/score-p_logs/c-
↪→ node2

${PROJECT_DIR}/test/paper/load_scorep.py --
↪→ workers=40 ${PROJECT_DIR}/score-p_logs/c-
↪→ node4

${PROJECT_DIR}/test/paper/load_scorep.py --
↪→ workers=40 ${PROJECT_DIR}/score-p_logs/c-
↪→ node8

Listing 23. bash version

DFTracer

${PROJECT_SOURCE_DIR}/df_analyzer/main.py ${
↪→ PROJECT_DIR}/dftracer_logs/c-node1/
↪→ overhead*.pfw

${PROJECT_SOURCE_DIR}/df_analyzer/main.py ${
↪→ PROJECT_DIR}/dftracer_logs/c-node2/
↪→ overhead*.pfw

${PROJECT_SOURCE_DIR}/df_analyzer/main.py ${
↪→ PROJECT_DIR}/dftracer_logs/c-node4/
↪→ overhead*.pfw

${PROJECT_SOURCE_DIR}/df_analyzer/main.py ${
↪→ PROJECT_DIR}/dftracer_logs/c-node8/
↪→ overhead*.pfw

Listing 24. bash version

Artifact Analysis (incl. Outputs)
The reported time for each tool is the load time reported

in the figure.

E. Computational Artifact A5

Artifact Setup (incl. Inputs)
The DFTracer code has to be compiled with GCC 10.3.1

with the software as provided on Section II-B. The test can
be executed by using a ctest configuration provided in the
repository.

Artifact Execution
The workflow for this artifact is run the following scripts

to capture the characteristics of Unet3D workload. The
steps are a) Generate the dataset b) Run the workload c)
analyze the traces.
Generate the dataset

mkdir -p ${PFS}/dlio
export PFS=<PATH_TO_PFS>
Generate the dataset
srun -N 32 --tasks-per-node=8 dlio_benchmark

↪→ workload=unet3D ++workload.dataset.
↪→ data_folder=${PFS}/dlio ++workload.
↪→ workflow.generate_data=True ++workload.
↪→ workflow.train=False

Listing 25. bash version

Run the Workload

export DFTRACER_ENABLE=1
srun -N 32 --tasks-per-node=8 dlio_benchmark

↪→ workload=unet3D ++workload.dataset.
↪→ data_folder=${PFS}/dlio ++workload.
↪→ workflow.generate_data=False ++workload.
↪→ workflow.train=True ++workload.output.
↪→ folder=${PROJECT_DIR}/output

Listing 26. bash version

Analyze the Workload

${PROJECT_SOURCE_DIR}/df_analyzer/main.py ${
↪→ PROJECT_DIR}/output/*.pfw

Listing 27. bash version

Artifact Execution
The script will generate the summary and the plots.

