
Data Flow Lifecycles for Optimizing Workflow Coordination
Hyungro Lee

Pacific Northwest National Laboratory
Richland, Washington, USA
hyungro.lee@pnnl.gov

Luanzheng Guo
Pacific Northwest National Laboratory

Richland, Washington, USA
lenny.guo@pnnl.gov

Meng Tang
Illinois Institute of Technology

Chicago, Illinois, USA
mtang11@hawk.iit.edu

Jesun Firoz
Pacific Northwest National Laboratory

Seattle, Washington, USA
jesun.firoz@pnnl.gov

Nathan R. Tallent
Pacific Northwest National Laboratory

Richland, Washington, USA
tallent@pnnl.gov

Anthony Kougkas
Illinois Institute of Technology

Chicago, Illinois, USA
akougkas@iit.edu

Xian-He Sun
Illinois Institute of Technology

Chicago, Illinois, USA
sun@iit.edu

ABSTRACT
A critical performance challenge in distributed scientific workflows
is coordinating tasks and data flows on distributed resources. To
guide these decisions, this paper introduces data flow lifecycle anal-
ysis. Workflows are commonly represented using directed acyclic
graphs (DAGs). Data flow lifecycles (DFL) enrich task DAGs with
data objects and properties that describe data flow and how tasks
interact with that flow. Lifecycles enable analysis from several
important perspectives: task, data, and data flow. We describe rep-
resentation, measurement, analysis, visualization, and opportunity
identification for DFLs. Our measurement is both distributed and
scalable, using space that is constant per data file. We use lifecycles
and opportunity analysis to reason about improved task placement
and reduced data movement for five scientific workflows with dif-
ferent characteristics. Case studies show improvements of 15×, 1.9×,
and 10–30×. Our work is implemented in the DataLife tool.

CCS CONCEPTS
• General and reference → Performance; Measurement; Met-
rics; • Information systems→ Information lifecycle manage-
ment; Distributed storage; Hierarchical storage management.

KEYWORDS
distributed workflows, performance analysis, data flow lifecycles,
storage bottlenecks, caterpillar tree
ACM Reference Format:
Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent,
Anthony Kougkas, and Xian-He Sun. 2023. Data Flow Lifecycles for Opti-
mizing Workflow Coordination. In The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’23), November
12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00

1 INTRODUCTION
Scientific exploration is increasingly distributed and storage inten-
sive. To focus on exploration rather than application development,
domain scientists emphasize productivity and flexibility by creat-
ing converged workflows that compose applications with different
characteristics — e.g., numerical solvers, data analytics, and ma-
chine learning (ML) — using storage (I/O) [15]. With large datasets
and distributed data sources, the primary performance challenge
of workflows is managing data accesses and flows on distributed
resources [15, 28, 48, 49].

Many of these bottlenecks can be removed with better workflow
coordination, including resource selection, task assignment, and
data placement. To guide these decisions, this paper introduces
data flow lifecycle analysis. Workflows are commonly represented
using task DAGs, or directed acyclic graphs where vertices are
tasks and edges show ordering dependencies [9, 13, 23, 50, 54, 59,
65]. Data flow lifecycles (DFL) enrich task DAGs with data objects
and properties that describe data flow—accesses, reuse, volumes,
footprints, and rates—and how tasks interact with that flow. DFL
graphs enable analysis from several perspectives: task, data, and
data flow. Each is important for identifying potential bottlenecks
and opportunities. The lifecycle graphs can be formed from either
static or dynamic workflow analysis.

Understanding DFLs can identify and suggest performance im-
provement opportunities that task DAGs cannot. For example, our
analysis identifies the following: (1) large data volumes; mismatched
data rates; (2) data non-use, or when data is unused by consumers;
(3) intra-task spatial-temporal locality; (4) inter-task data locality,
or when data is used by multiple tasks (5) critical and non-critical
data flows (6) trade-off between task and data parallelism.Table 1
gives a more complete list.

The opportunities identified from the DFL graphs inform re-
mediation strategies. They can include intelligent task and data
placement that pair tasks and flow resources, distributed caching
to reduce unnecessary movement, anticipatory data movement to
avoid stalling, and write buffering to move flow off the critical path.
Often a single strategy applies to multiple opportunities; and some
strategies may be easier to enact than others.

Corrected Version of Record. V.1.1. Published January 23, 2024.

https://orcid.org/0000-0002-4221-7094
https://orcid.org/0000-0001-8266-0923
https://orcid.org/0009-0003-5995-6947
https://orcid.org/0000-0002-8174-2545
https://orcid.org/xxx
https://orcid.org/xxx
https://orcid.org/xxx
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607104&domain=pdf&date_stamp=2023-11-11
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607104&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

T1àdataàT2 Volume
❷à❸à❹ 2.4 GB
❷à❸à❺ 0.88 GB
❶à0.h5à❷ 0.05 GB
❶à1.h5à❷ 0.05 GB

❷
❶

❸

❹

2) Data
 reuse

1) Parallel
 flows

❺
(a) (b) (c)

❷❶

❺

❹❸

(d)

Figure 1: Workflow data flow lifecycles (DFL) (a) capture data flow as a graph, where flow between tasks (red) and data (blue) is
left-to-right. Automated DFL analysis identifies remediation opportunities (b) using DFL caterpillar trees, a generalization of
critical path, and (c) ranks them by importance. (d) DFL analysis uses novel notions of caterpillar trees, including one showing
a path’s data branches and task joins.

Although data flow analysis is a well known technique for pro-
gram compilation and execution [55, 58, 74], there have been few
applications to workflows. Data flow analysis is based on static
program analysis and may include dynamic disambiguation. The
methodology cannot easily be applied to workflows because of dif-
ferent programming models, data accesses across different abstrac-
tion layers (memory vs. storage vs. network), and input-dependent
behavior. Recent work has recognized that workflow DAGs can be
enriched with data nodes to improve scheduling [21]. However, it
assumes a single and uniform set of data accesses. Our work gen-
eralizes the DAG representation to dynamic flow and introduces
several lifecycle relations (patterns) and properties (including data
reuse, rates, volumes, footprints, parallelism).

This paper overviews our approach (§2); describes distributed
measurement (§3); defines lifecycle representation, properties, and
entities (§4); and presents automated analysis that highlights promis-
ing opportunities for performance improvement (§5). Our work is
implemented in the DataLife tool [44]. We evaluate (§6) our ap-
proach and tools on five different workflows. We show how to use
our opportunity analysis to reason about converting a workflow
pipeline designed for throughput into one targeting response times.
Increasingly, optimizing for response time is important because
it enables the real-time decisions needed for instrument control,
experimental feedback, and automating scientific discovery. Our
three case studies demonstrate execution time improvements of
15×, 1.9×, and 10–30×.

Our contributions are as follows:
• Definition, measurement, visualization, and analysis of data
flow lifecycle graphs for distributed scientific workflows.

• Scalable monitoring to capture components of data flow life-
cycles, where the size of DFL measurements is proportional
only to task-file instances and is constant per data file.

• Methods to construct, analyze, and identify opportunities for
improving workflow recomposition, task assignment, and data
flow. The methods are efficient, i.e., linear in edges and vertices.

• Evaluation of data flow lifecycles with contrasting workflows
and use cases that demonstrate workflow performance im-
provement of 15×, 1.9×, and 10–30×.

2 OVERVIEW
Data flow lifecycles (DFL) enrich task DAGs with vertices, edges,
and properties that describe data flow and how tasks and data
objects interact with that flow. The result takes the form a DFL
DAG (DFL-DAG), which can be generalized as graph (DFL-G) if, e.g.,

some task nodes are merged. Although a DFL-DAG can be formed
from either static or dynamic analysis, our approach focuses on
the latter to capture execution properties and precise dependencies.
With our approach, the DFL-DAG’s structure is independent of
execution, coordination framework, and resource assignment, as
long as multiple workflow executions of the same input have the
same DAG. An overview of our approach is depicted in Fig. 1. Our
work is implemented in the DataLife tool [44].

The first step of DFL analysis is collecting the information needed
for DFL graphs. Our method uses runtime measurement to capture
data flow characteristics. For this paper, a data object is a file. To
avoid the enormous space required by I/O traces, we use distributed
and scalable monitoring such that DFL information is proportional
only to task-file instances because it is constant per data file.

The next step is forming aDFL graph. To represent an execution’s
forward flow, we use a DFL DAG (DFL-DAG), which is acyclic.
Figure 1a shows an example DFL-DAG. Tasks and data objects are
vertices; directed edges show data flow. Graph vertices and edges
are annotated have properties that represent execution and flow,
including data accesses, reuse, volumes, footprints, and rates.

To visualize lifecycle graphs, we use Sankey diagrams [5, 40]
(Fig. 1a). These diagrams indicate execution and flow properties
using scaled vertices and edges.

It can also be useful to aggregate nodes in the DFL-DAG to form
a lifecycle template (DFL-T). A common example is representing
control loops by aggregating parallel instances of the same task.
We generalize either DFL-DAGs or DFL-Ts by varying a key input
parameter and forming averaged graphs from several executions.
Property values are either averaged or represented as histograms.

The final step is identifying opportunities for improving work-
flow performance. This consists of finding and ranking potential
opportunities based on DFL-G structure and patterns.

To narrow the search, we use a generalization of critical path
called a DFL caterpillar tree (CT). DFL CTs have costs based on
execution and flow properties. Figure 1b shows a CT based on flow
volume (for subfigure (a)) while Fig. 1d shows a CT based on data
producers and consumers.

We then find opportunities by identifying patterns in the critical
and near-critical CTs. Patterns are defined by graph entities, or
relations between vertices and edges. Using CTs, the DFL analysis
is linear in edges and vertices.

Finally, we rank opportunities by bottleneck severity. The rank-
ing is based on pattern metrics formed from task, data, and flow
properties. Figure 1c shows a ranked table for subfigure (a) that

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

compares the opportunities (patterns or entities) of given types.
The results can be used for recomposing the workflow, improving
task assignment, or improving data movement.

3 DISTRIBUTED MEASUREMENT
This section describes distributed and scalable measurement of a
workflow’s execution for constructing DFL graphs (DFL-G).

Capturing data flow. As DFLs are based on dynamic data flow,
the first step is monitoring a workflow’s I/O during executions with
representative inputs. The monitoring overrides I/O calls using
typical dynamic linking techniques e.g., Linux LD_PRELOAD. In this
paper, we focus on (serial) POSIX and C I/O, which includes all
variants of open, close, read, write, fseek etc.

Characterizing data flow. Understanding flow lifetimes requires
more information than captured with than either I/O caching [10,
62] or I/O tracing [17, 47, 69]. To track flow between I/O operations,
we must know when the same datum is accessed. There are two
implications. To track data addresses, it is necessary to maintain the
state of the I/O stream that is opaque in I/O operations like read and
write. These operations take an opaque handle and depend upon its
state to know what data to access. Second, to maintain histograms
that map distinct data items to flow metrics, data identities must
be understood at run time, ruling out postmortem analysis. We
therefore track the state of each opaque I/O handle (file descriptor
or I/O stream). We shadow each I/O handle and maintain its state by
intercepting and emulating the effects of all relevant I/O operations.

A task-file pair represents data flow. For each task-file pair, we
maintain a histogram of data accesses and access statistics. A single
histogram represents one or two flow relations, either producer or
consumer, depending on operation type. I/O reads show flow from
data to a consumer task. Writes show flow from a producer task to
its data. A consumer relation is a DFL-G directed edge from a data to
task vertex; a producer is the reverse. Over multiple tasks and files,
many consumer and producer relations are formed corresponding
to DFL-G edges. The DFL-G is built by connecting all edges.

A given histogram maintain statistics for each data block in a file.
The statistics include operation type, access frequency, distance,
and rate. From these statistics, we form DFL-G properties such as
data volume, block access frequency, access rate, etc. that annotate
edges and vertices.

Scaling. To scale DFL-G measurement, each histogram’s size
should be constant rather than proportional to either operations (as
in tracing) or file sizes (as in naive histograms). If constant-sized,
the total size of all workflow histograms is proportional to instances
of task-file pairs, which is typically very modest.

The size of a histogram is the product of data locations and sta-
tistics. The number of statistics is a constant (bounded by ≈10). We
employ two methods to bound the number of locations: adjustable
access resolution and spatial sampling. The maximum number of
locations is determined by access resolution or blocks per data file.
The block size (in bytes) is selected based on expected of data vol-
umes. For reads, block size is a ratio of file size; for writes we use
historical information or user guidance.

The second method, spatial sampling, can be used to additionally
reduce data locations. Spatial sampling selects a representative

fraction of the data addresses and tracks lifecycles for them. Note
that sampling is on data locations and not I/O operations

To ensure correct tracking, the selected fraction of addresses must
be the same for each producer and consumer in a lifecycle. We design
a sampling rule that, given a location, determines whether to track
it or not. The correctness requirement means that the rule must be
deterministic and depend only on location, i.e., independent of access
order and the volume of the data accessed. To sample lifecycles
(connected flows), we adapt a strategy designed for single flows [68].
Given a deterministic hash function 𝐻 , we track a location 𝐿 if

𝐻 (𝐿) mod 𝑃 < 𝑇

using modulus 𝑃 and threshold 𝑇 . Each sample represents 1/𝑟 lo-
cations where the sampling rate 𝑟 = 𝑇 /𝑃 . For example, setting
𝑃 = 100 will sample roughly 𝑇 percent of the whole space.

When combining both strategies, histogram size is effectively
bounded by a constant, establishing the total size bounds above.

4 DATA FLOW LIFECYCLE GRAPHS
This section defines DFL graphs and discusses methods for con-
struction (§4.1), analysis (§ 4.2 and 4.3), and visualization (§4.4).

4.1 Lifecycle graphs, DAGs, and templates
Once lifecycle measurements are gathered, aDFL graph (DFL-G) can
be constructed. Since measurement histograms capture all graph
edges, the DFL-G is built by connecting all edges. DFL-G construc-
tion can be parallelized by ensuring vertex updates are atomic.
However, edge sizes are typically modest.

A DFL-G is a property graph [56], where both vertices and edges
are annotated with property values formed from histogram statis-
tics. Recall that both tasks and data files are vertices in the graph. A
read operation (by a consumer task) is denoted by a directed edge
from a data source (vertex) to a task sink. A write operation (by a
producer task) is denoted by a directed edge from a task source to
data sink.

We denote the vertex sets for data files and tasks with 𝐷 and 𝑇 ,
respectively. Then, the vertex set is 𝑉 = {𝐷 ∪𝑇 }. The edge set is

𝐸 = {(𝑢, 𝑣, 𝑝) : (𝑢 ∈ 𝐷, 𝑣 ∈ 𝑇) 𝑜𝑟 (𝑢 ∈ 𝑇, 𝑣 ∈ 𝐷), 𝑝 ∈ R}
where each edge (𝑢, 𝑣) is annotated with a lifecycle property value
𝑝 . In practice, 𝑝 is a set of properties per edge and vertex.

Connecting edges creates an acyclic graph since each task in-
stance is a distinct vertex. We call this graph a DFL-DAG. It can also
be useful to aggregate instances of the same task vertex to create a
lifecycle template (DFL-T), potentially forming cycles.

By itself, the DFL-G is cumbersome to manually analyze. The
following subsections discuss techniques for analyzing graph enti-
ties, and visualization. The next section (§5) discusses opportunity
analysis using DFL-G patterns.

4.2 Lifecycle properties
To understand dynamic data flow, we convert histogram statistics
into several classes of lifecycle properties.

Base properties form the core metrics.
• Task lifetime: task execution time
• File lifetime: time between open and close
• Access frequencies for each data block

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

chr1

indiv

indiv

indiv

indiv

chr1.phase3

sift

SIFT.chr1

freq

ALL-freq

freq

AFR-freq

freq

SAS-freq

freq

EUR-freq

freq

EAS-freq

freq

AMR-freq

freq

GBR-freq

mutat

ALL-mut

mutat

AMR-mutmutat

EAS-mut

mutat

AFR-mut

mutat

EUR-mut

mutat

SAS-mut

mutat

GBR-mut

chr1n-4

merge

AMR

columns

EUR

GBR

SAS

EAS

AFR

ALL

chr1n

chr1n-3

chr1n-2

chr1n-1

❶
❷ ❸

(a) 1000 Genomes

❷
❶

❸

❹
❺

(b) DeepDriveMD (DDMD) (c) Belle II Monte Carlo

(d) Montage (e) Seismic Cross-Correlation (Seismic)

Producer→data→consumer Volume

aggregate (2)→ a.h5 (3) → train (4) 2.4 GB
aggregate (2)→ a.h5 (3) → lof (5) 0.88 GB
openmm (1) → 0.h5 → aggregate (2) 0.05 GB
openmm (1)→ 1.h5 → aggregate (2) 0.05 GB

(f) Ranking of DDMD composite edges (top 4).

Figure 2: (a)-(e) Data flow lifecycle DAGs for five workflows. (f) A producer-consumer pattern ranking for DDMD. Data flow is
left to right. Tasks and data are red and blue, respectively. Critical paths are purple. For DDMD, Belle II, and Montage, critical
path shows data volumes; for 1000 Genomes, it shows path with most instances of data branches > 2 (green) and task joins; for
Seismic, it shows most instances of task fan-in (yellow).

• Data volume: total volume (non-unique) of data
• Data footprint: unique volume of data
• Read (write) latency: total read (write) latency
Ratios capture measures for data rates and intensities.
• Read (write) rate: ratio of read (write) operations to task time
• Data read (write) rate: ratio of read (write) volume to task time
• Read (write) blocking fraction: fraction of time for read (write)
blocking time during an open I/O stream

Access patterns describe lightweight data access pattern statis-
tics for a specific data object.

• Consecutive access distance: linear (“seek”) distance between
consecutive access locations 𝑖 and 𝑗 for spatial locality.

• Reuse and subsets: degree that data is reused or unused.
• Use concurrency: whether data is accessed by many tasks.

Opportunity analysis (§5) finds higher-level workflow patterns.
Figure 2 shows examples of reuse and concurrency for two work-

flows. (Detailed discussion is deferred to §6.) Figure 2a shows single-
use concurrency in 1000 Genomes workflow [1]. The workflow
processes multiple chromosomes. The biological signature of each
chromosome is specified in a file. Each file is processed by multi-
ple indiv by tasks, concurrently and independently, where each
task processes a disjoint chunk. The DFL-G shows the concurrency
via edges (1) emanating from each chromosome file (data vertex)
to its corresponding indiv task (task vertex). The pattern is also
data parallel, important later, since each chunk is read once and
processed by a separate task.

Figure 2b shows two kinds of reuse inDeepDriveMD (DDMD) [45].
In this workflow, a simulation stage (1) generates several HDF5
files that an aggregator (2) combines (3). The incident edges of

this combined file show much larger data volume outflow than
inflow, implying data reuse. (The reuse can be seen by zooming
into edges per file block.) The downstream task ML train (4) re-
peatedly accesses data from the combined dataset (3), resulting
in intra-task data reuse. The downstream task lof (5) reads the
same data, resulting in inter-task reuse.

4.3 Perspectives, entities, and ranking
DFL-Gs enable flow analysis from several perspectives:

• task: what data a given task produces or consumes
• data: what tasks produce or consume a given data file
• flow: what data movement is required for execution
To facilitate analysis, we identify the following lifecycle entities,

which include both graph constructs and relations between them:
• data or task vertex;
• data or task relation: a task (data) vertex and its incident edges;
• producer or consumer relation: the simple edges between a
producer task and a dataset, or the reverse;

• producer-consumer or consumer-producer relation: composite
relation from a producer, dataset, and consumer; or the reverse.

To quickly highlight entities of related to bottlenecks or opportu-
nities for improvement, we associate property values with entities.
We then form a projection of the entity according to a selection
criterion and rank order the results by property values.

An entity projection refers to the process of extracting an entity
type from the original DFL-G. A ranking refers to sorting the pro-
jected set by property values. As a simple example, data vertices
can be sorted and ranked by data volume or rate to identify which

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

Pattern Definition Identification in DFL-G Remediation

Data volume Tasks read/write large data vol-
umes

DFL-G flows with volumes exceeding storage or network
ability

Pair tasks & storage resources; write buffer-
ing; anticipatory data movement

Mismatched
data rate

Mismatch between rate of data pro-
duction and data consumption

DFL-G flows with data rates that cause stalls, likely on
critical path

Pair tasks & flow resources; adjust data gen-
eration rate; data filtering/compression.

Data non-use Data not used by consumer in
whole or part

DFL-G data leaf vertex: data unconnected to consumers,
DFL-G flows with total data transfer smaller than the data
file size.

Selective movement, e.g., on-demand
caching; data filtering.

Intra-task data
locality

Spatio-temporal access locality
within a file

DFL-G data vertex with consecutive access distances <
block size; 0 indicates temporal locality

Caching (including hints and biased poli-
cies); block prefetching.

Inter-task data
locality

Same data is used by multiple tasks
or task instances.

1) DFL-G producer & consumer write/read same data. 2)
DFL-G task accesses same data over multiple instances
(e.g., loops) 3) DFL-G data read by multiple consumers.

1) Caching, co-scheduling. 2) Data reten-
tion; caching. 3) Co-scheduling and data
placement.

Critical
(non-critical)
data flow

Data flows that must improve (or
could relax) to improve response
time (to free resources)

1) DFL-G’s caterpillar has flow that causes stalling (criti-
cal). 2) DFL-G producer and consumer use same data and
consumer can proceed without all inputs. [Must validate
(2)]

1) Bias resources for critical vs. non-critical
tasks & flows; anticipatory data movement.
2) Change task-data synchronization (e.g.,
pipeline data push/pull).

Task and data
parallelism
trade-off

Trade-off between task parallelism
(for better response time) and over-
head of tasks or data flow (e.g., in-
creased I/O contention, rates).

The in-degree (number of neighboring data vertices) of a
consumer task in DFL-G. The in-degree implicitly specifies
number of producer task vertices executed concurrently.
[Must validate]

Coordinate parallelism, task placement,
and data flow resources.

Table 1: Identification of opportunities in the DFL DAG and potential remediations.

data files should be prioritized for storage and flow resources. Fig-
ure 2f ranks the DDMD workflow’s producer-consumer relations
by volume. Ranking provides an important way to identify the
lifecycle entities most likely to benefit from techniques such as re-
composition, co-scheduling or task-data co-location. Opportunity
analysis will be discussed in more detail in §5.

4.4 Visualizing lifecycles
To visualize DFL-Gs, we use Sankey diagrams [5, 40], a represen-
tation designed to show flow from one set of items (vertices) to
another. We extend the typical diagram of two sets to apply to both
DFL-DAGs and DFL-Ts. Figure 2 shows examples for a diverse set
of workflows. Each vertex is represented as a rectangle and flow
between pairs of vertices is represented with a directed edge. The
width of the edge is proportional to a selected property, showing
the significance of the flow.

5 INSIGHT AND OPPORTUNITIES
A primary purpose of DFL graphs is to facilitate identification
of potential opportunities for improving the overall performance
of a workflow. We now describe automated opportunity analysis
to focus an analyst’s attention on a small set of candidates. The
opportunity analysis is efficient, i.e., linear in edges and vertices.

Table 1 summarizes the identified opportunities. The patterns are
based on a combination of the entity analysis previously described
(§4.3) and higher-order relations introduced in this section. The ta-
ble lists several possible remedies, where the best candidate depends
on workflow coordination and available resources and therefore re-
quires user direction. Some opportunities require human validation
to ensure correctness, indicated by “[Must validate]”.

One method for identifying patterns in the DFL-G is graph pat-
tern matching [20], i.e., finding all subgraphs that are isomorphic

to each pattern. However, the search space with these approaches
can grow exponentially with pattern size and is NP-complete [29].

In contrast, our methods have a worst-case complexity of linear
in edges and vertices. The basic idea is to leverage DFL-G structure,
characteristics of target patterns, and domain knowledge. The first
step narrows the opportunity search (§5.1). The second identifies
target patterns using only highly local knowledge, primarily a
vertex and its incident edges (§ 5.2 to 5.4). This section shows how
to detect each pattern, indicates their potential opportunities, and
suggests potential remediation strategies.

5.1 Narrowing the opportunity search
Two popular methods for partitioning graphs for resource assign-
ment are min/max flow (e.g., communication) [26, 34, 41] and
acyclic hierarchical partitioning (e.g., circuits) [36, 51].

We adopt a different method based on an extended notion of
critical path. The advantage of our method is that it highlights op-
portunities that are more likely to improve workflow response time.
The reason is that our method prioritizes graph subsets with a de-
pendent series of tasks where most producer-consumer exchanges
have high locality. Thus, in contrast to the above methods, it tends
to find threads of execution where coordination can be localized.

To narrow the opportunity search, we rely on two graph theoretic
concepts: critical path and caterpillar tree. A critical path is the
longest path in a directed acyclic graph, where vertices and/or edges
are weighted with a certain property value. Critical path analysis
(CPA) typically finds the minimal time required to finish a workflow.
The critical path forces tasks on other paths to wait. Patterns along
this path therefore highlight opportunities for shortening the path.

Our analysis performs CPA with respect to several different
properties, yielding generalized critical path analysis (GCPA). By
adopting different properties the path focuses on different bottle-
necks. By exploring the the properties footprint, volume, and flow

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

rate, the analysis identifies potential bottlenecks corresponding, re-
spectively, to storage capacity, transfer volume, and transfer speed.
Identifying these alternative bottlenecks is crucial for better task
coordination and resource assignment for both data and flows.

Given a critical path we want to identify patterns along it. Un-
fortunately, critical paths are too small a graph subset because they
may not show all relevant producer or consumer relations for a
critical task or data vertex. To address this, we extend the path
into a caterpillar tree. A caterpillar or caterpillar tree is defined as
a tree in which all vertices are within distance one of a critical
path [2, 25, 33]. Caterpillars identify all distance-one fan-in and
fan-out tasks on the critical path. Figure 3 shows a DFL graph, the
critical path, and its associated caterpillar tree.

Unfortunately, because DFL-Gs have two types of vertices (data
and task), a normal caterpillar destroys some relevant producer/-
consumer relations. Our DFL caterpillar extends the caterpillar with
the following rule: if the roots of the caterpillar are data vertices,
also include distance two vertices from the critical path (𝑑9 and 𝑑11
in Fig. 3b) that are associated with the producer tasks (𝑡7 and 𝑡9 in
Fig. 3b respectively) as part of the caterpillar tree.

Once the critical paths and associated DFL caterpillars are com-
puted, we identify patterns with respect to either task relations or
data relations. Considering both is important because each rela-
tion makes detection of a pattern a matter of only a vertex and its
incident edges. Then, the basic optimization strategy is two-fold:
a) parallelize between trees (threads); and b) improve execution of
critical caterpillar tree fragments with increased data locality or
improved flow resources.

5.2 Patterns from data relations
A data relation is a data vertex and its incident edges.We distinguish
data relations based on incoming and outgoing edges. There are
four categories: regular (one in, one out); fan-in (many in, one out);
fan-out (one in, many out); fan-in/out (many in, many out).

Data relations identify the following interesting patterns. First
consider single consumer (one-out) relations. If the consumer utilizes
only a subset of the data, it exhibits a data subset pattern that will be
reflected in DFL-G property values. For example, if total footprint
consumed is smaller than the dataset size, only a subset has been
accessed. This likely implies unnecessary data movement, either
by the producer or by the consumer (data volume > dataset size),
or both. If a consumer accesses the same data block multiple times,
there is intra-task data reuse. In this case, hot blocks can be cached
to accelerate same data accesses. If a consumer access pattern has
a small consecutive access distance, it exhibits spatial locality and
likely benefits from prefetching and caching.

Now consider data relations withmultiple distinct consumer tasks
(fan-out). If the same data is used by multiple consumers it may
be profitable to exploit this inter-task reuse using caching or co-
scheduling. If each consumer processes a partition of the input
data, there is data parallelism. Consider either a parallel file system
(parallel I/O), a filesystemwith highmetadata throughput (metadata
contention with serial I/O), and co-scheduling some consumer tasks
to convert disk and network flow into local in-memory flow.

d1

t1d2

d3

t4

t3

d4

d6

d5t2

d6

t7

t8

t9

d9

d10

d11

t12 d13

t5 d7

t6 d8 t11 d12

t10

t13 d14

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16

e17

e18

e19

e20

e21

e22

e23

e24

e25

e26

e27

(a) A DFL graph with critical path (red edges). Tasks and data are
red circles and blue rectangles, respectively. An edge property 𝑒𝑖

depicts metric values.

d1

t1d2

d3

t4d4

d6

d5

d6

t7

t8

t9

d9

d10

d11

d13t12

e1

e2

e3

e5

e7

e8

e9

e10

e13

e14

e15

e18

e19

e20

e23 e26

(b) Narrowing a search with the DFL caterpillar (green edges).

d1

t1d2

d3

d4

e1

e2

e3

e5

(c) Aggregator:
equal in/out-flow.

t4d4

d6

d5

d6

e7

e8

e9

e10

(d) Compressor:
smaller out-flow.

d6

t7

t8

t9

d9

d10

d11

d13t12

e13

e14

e15

e19

e20

e23 e26

(e) Composite pattern.

Figure 3: Identifying opportunities in data flow lifecycles.

5.3 Patterns from task relations
We distinguish task relations in the same way, resulting in regular,
fan-in, fan-out, and fan-in/out.

An interesting and common pattern is aggregator (fan-in) data
parallelism (Fig. 3c). A variant is the compressor-aggregator with
data parallelism (Fig. 3d).

In the former, several input streams, usually of the same size,
are inputs to a task. The aggregator task combines them into a new
composite file, possibly also applying a minor transformation. An
example is the aggregation stage DDMD. In DDMD, either the
point cloud or the contact map from separate files are processed and
aggregated to a new HDF5 file. Since aggregation likely introduces
unnecessary serialization and data movement, the convenience
of a single input must be evaluated with this overhead. If conve-
nience is paramount, the aggregation should possibly be pipelined
across multiple network links (to avoid network contention) or
multiple/improved storage resources (to avoid I/O contention).

In a compressor-aggregator pattern, the aggregator additionally
compresses data. An example is in 1000 Genomes where the merge
task combines several input files into a compressed tar file. If
assigned to the correct resource, this can benefit downstream flows

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

over slow storage and networks. Alternatively, the compression
may not be worth the serialization.

5.4 Patterns from task-data compositions
More interesting patterns emerge when task and data relations on
the DFL caterpillar are composed.

We provide three examples. First, a series of task and data re-
lations. Consider re-composition and co-scheduling to improve
performance. Second, an aggregator task followed by a regular task.
An example is DDMD (Fig. 2b); consider coalescing or co-scheduling
the aggregator and its consumer.

A third category of compositions involves forms of data paral-
lelism and overlaps with the previous category. Examples include
combinations of aggregators and splitters. Figure 3e shows an exam-
ple of splitter tasks, where one is followed by a regular task. 1000
Genomes shows an example of aggregator followed by a splitters:
merge gathers information from all indiv tasks and scatters it over
subsequent freq and mutat tasks.

Several remediation strategies are relevant. If an aggregator’s
only function is combining producers, it likely introduces unneces-
sary sequencing. Alternatively, a very large aggregator may benefit
from additional subaggregators for locality domains so that net-
work or storage contention can be avoided. In addition, appropriate
storage resource assignment can minimize cost associated with the
overhead of opening/closing many small files.

Again, the common theme in these remediation strategies is
to improve execution of DFL caterpillar fragments and parallelize
separable caterpillars or paths.

6 EVALUATION
This section demonstrates the applicability of data flow lifecycles
to distributed scientific workflows. We use DFLs and opportunity
analysis to reason about improved task placement and reduced
data movement for five scientific workflows with different charac-
teristics. We overview characteristics and opportunities for each
workflow (§6.1). Three case studies (§ 6.2 to 6.4) apply different
remediations techniques to selected workflows and show perfor-
mance improvements of 15×, 1.9×, and 10–30×, respectively. In the
first two case studies, we optimize workflow for response time. The
third case is optimized for throughput. Increasingly, optimizing
for response time is important because it enables the control loops
needed for automating experiments with instruments.

Our evaluation uses the machines in Table 2. Although our eval-
uation uses compute resources at medium to smaller scales, our
results are still value for the supercomputing community. First,
these scales are often appropriate for control loops. Second, it is
often more difficult to find performance opportunities at smaller
scales than large because there is less likelihood for moving massive
data volumes and causing resource contention [48].

6.1 Workflow overview
We compare and contrast DFL-Gs for five contrasting workflows.
Figure 2 shows the signature DFL-DAGs for each workflows. Fig-
ure 4 shows their corresponding DFL caterpillars. For each work-
flow, we identify interesting patterns and opportunities that can be
observed along their DFL caterpillars.

Machine Compute, Memory Storage options (notes)
CPU
cluster

2× Intel SkyLake; 192 GB NFS (default); Lustre; SSD (node);
Ramdisk (node)

GPU
cluster

2× AMD EPYC; NVidia
RTX 2080 Ti; 384 GB

NFS (default); BeeGFS (w/ caching);
SSD (node); Ramdisk (node)

Data 2× Intel Haswell, 128 GB Remote storage via 1 Gb/s WAN
Table 2: Machine configurations for experiments.

Loading [MathJax]/extensions/MathMenu.js(a) 1000 Genomes (b) DDMD (c) Belle II MC

(d) Montage
Loading [MathJax]/extensions/MathMenu.js

(e) Seismic

Figure 4: DFL caterpillars for the DFLs in Figs. 2a to 2e. Task
and data vertices are red and blue, respectively.

1000Genomes. Figure 2a shows theDFL-G for 1000 Genomes [1],
a data-intensive bioinformatics workflow. The critical path (num-
bered) represents the path with most instances of data branching
(fan-out) and task joining (fan-in); it is part of the DFL caterpillar
tree shown in Fig. 4a. The data file with fan-out (1) to four indiv
tasks corresponds to the “multiple distinct consumers” pattern with
data parallelism (§5.2). It suggests an opportunity to reduce the
pattern’s time using increased task parallelism. A more complete
picture emerges with the composite producer-consumer pattern
represented by 1 , 2 , and 3 . There is a trade-off between task par-
allelism and I/O contention from processing small files (2) by the
consumer (3). Our case study (§6.2) creates a pipeline optimized
for response time (vs. throughput) and adjusts parallelism and as-
signment of tasks and data flow resources (Table 1), improving
performance by 15× (§6.2).

DeepDriveMD. Figure 2b shows the DFL-G for DeepDriveMD,
the deep learning-driven molecular dynamics simulations workflow
for protein folding [3, 45]. DFL-G edges and critical path represent
data flow volume or the path with the most data movement. Fig-
ure 2f ranks the producer-consumer relations by volume. Observe
that both train (4) and lof (5) uses the same data (3). However,
train accesses far more data (2.4 GB vs. 0.88 GB)—and more than is
produced by aggregate (4). Thus, train has substantial intra-task
locality through data reuse and would benefit from caching. DFL-G
analysis using footprint (not shown) reveals data non-use, i.e., only
half the data produced by aggregate is used by both consumers. As
discussed in our case study (§6.3), these facts also point to a trade-off
between (a) work minimization—one aggregate—that introduces
serialization and (b) work replication—parallel aggregates—that
increases task-data parallelism. If there are available data flow re-
sources that can be enabled with intelligent task-data coordination,
the latter choice reduces response time. Our case study leverages

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

Figure 5: 1000 Genomes: DFL caterpillar (green) by data
branches and task joins. Tasks are red; data blue.

this and other insights to create a new pipeline optimized for re-
sponse time (vs. throughput) and improves it by 1.9× (§6.3).

Belle II Monte Carlo. Figure 2c shows a reduced but representa-
tive DFL-G for Belle II MC, a data-intensive physics workflow [32].
Edges represent data volume. The DFL-G shows recurring data-task
fan-in from a single collective dataset. The pattern immediately
highlights inter-task data reuse, i.e., multiple tasks using the same
file. The DFL-G’s consecutive access distance property (not shown)
reveals many access distances of 0, indicating intra-task spatial
locality. To exploit the first opportunity, tasks could be scheduled
at the same time on nearby resources and use distributed caching.
Caching and data prefetching can address the second. Our case
study (§6.4) demonstrates an impact of 10× from caching.

Montage. Figure 2d shows the DFL-G for Montage [4, 57], a
compute-intensive astronomical image processing toolkit that uses
a collection of structural images to build a composite image mosaic
for viewing outer space. To assemble a large number of small image
files, it re-projects the images through a common frame to match
the background and determine overlaps, generating many inter-
mediate files for correction and adjustment. The computational
component results in low effective data rates and low I/O opera-
tions. Consequently, there is room to parallelize or accelerate tasks
without overburdening flow resources.

Seismic Cross Correlation. Figure 2e shows the DFL-G for
Seismic Cross Correlation [6, 27], a data intensive workflow that
computes cross correlation of signals frommultiple seismic stations,
identifies good fits, and compresses them in a single file. The critical
path represents instances task fan-in (joins). The DFL-G’s overall
pattern is a multi-stage aggregator, that suggests potential for a
trade-off between parallelism vs. data and flow locality. On one
hand, a multi-stage aggregation could introduce more task and flow
parallelism; and near-data operations could reduce the downstream
flow to avoid resource contention. On the other hand, reducing the
stages with task composition would reduce data movement and
increase locality.

6.2 Case study: 1000 Genomes
The 1000 Genomes project [22] studies the genomes of 2504 in-
dividuals from 26 populations to understand human genetic vari-
ation. The 1000 Genomes proxy application [1] has five tasks:
individuals (chromosome processing), individuals_merge (ag-
gregation), sifting (Single nucleotide polymorphisms (SNPs) vari-
ant SIFT scores), frequency (overlapping mutation frequency), and

mutation_overlap (overlapping mutations). In subsequent discus-
sion, we abbreviate the five tasks respectively as indiv, merge,
sift, freq, and mutat. The default configuration targets through-
put performance with large chunks of work but very long run times.
We are interested in efficient response time.

DFL-G analysis. Figures 2a and 5 show DFL-Gs. As previously
observed, there is an opportunity to increase task parallelism. How-
ever without careful task and flow coordination, it increases data
movement and contention and degrades response time.

Figure 5 shows the DFL-G for Chromosome 1 (chr1). There is a
dependency between indiv and merge; sift is independent; and
freq and mutat are consumers of the output files generated by
merge and sift. In addition, there are many explicit data branches
(fan-out, green). For example, 1) columns and 2) chr1 are consumed
by multiple indiv tasks. The data branches indicate duplicated and
congested data flow as the same data is consumed by many tasks at
once. Either staging or caching would increase locality of data and
consumer tasks and alleviate contention.

DFL caterpillar. Figure 5 and Figure 4a show the Sankey-based
and simplified caterpillar, respectively, based on instances of data
branches and task joins. There are five branches and four joins (ag-
gregation on indiv, merge, sift, and mutat). Recall the caterpillar
tree expands the critical path to include all significant tasks and
data: all indiv, merge, sift, and mutat tasks and their inputs. We
identify 10 caterpillar trees, one for each chromosomes. Because
(a) the tasks along each caterpillar have several dependencies and
(b) there are limited dependencies between caterpillar trees, we
increase the locality of tasks and data within each caterpillar.

Parallelism and staging. To maximize producer-consumer
tasks locality, we schedule tasks within a caterpillar tree to the same
compute node and stage their input files (columns and AMR) to the
much faster node-local file systems provided by an SSD and RAM-
disk. We co-locate the sift task to run concurrently with merge for
better parallelism. With that, the execution is partitioned into four
stages: stage 1 for data staging that moves input files from parallel
file systems such as BeeGFS to local storage; stage 2 includes indiv;
stage 3 includes merge and sift, running concurrently; stage
4 includes freq and mutat. The four stages follow the fork-join
parallelism. All intermediate files are staged locally.

Evaluation. To demonstrate the efficiency and effectiveness
of the proposed design, we perform a comparison study using 6
distinct configurations for I/O staging and distribution. The input
problem size is 30, limiting the indiv tasks per chromosome to 30.
For 10 chromosomes, there are 300 indiv tasks, 10 merge tasks, 10
sift tasks, 70 sift tasks and mutat tasks. The configurations are:

(1) 15/bfs. The tasks are scheduled on 15 nodes with SLURM,
where the 300 indiv tasks of stage 2 are partitioned into 15
sets, each set handled by one node, followed by stage 3, and
finalized by stage 4. All files and intermediate files are staged
in the parallel file system (BeeGFS).

(2) 10/bfs. In contrast to 15/bfs, the indiv are scheduled on 10
nodes, where 300 indiv are partitioned into 10 sets. Each set
of 30 indiv is processed on one node.

(3) 10/bfs+shm. In contrast to 10/bfs, the intermediate files are
staged in local RAM-disks.

(4) 10/bfs+ssd. In contrast to 10/bfs+shm, the intermediate
files are staged in SSDs.

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

Stage 0
 (staging)

0

2

4

6

8

10

Se
co

nd
s

15/bfs
10/bfs
10/bfs+shm
10/bfs+ssd
10/bfs+shm+staging
10/bfs+ssd+staging

Stage 1
 (indiv)

0

100

200

300

400

500

Stage 2
 (indiv_merge+sift)

0

100

200

300

400

500

Stage 3
 (mut_olap+freq)

0

100

200

300

400

Total0

200

400

600

800

1000

1200

Figure 6: 1000 Genomes: Execution time for each configuration, showing times for each stage and entire workflow.

(5) 10/bfs+shm+staging. Here stage 1 opts in and moves all
the necessary inputs to tasks to faster, local RAM-disks.

(6) 10/bfs+ssd+staging. In contrast to 10/bfs+shm+staging,
the necessary inputs are moved to on-node SSDs.

We perform each experiment on GPU cluster (Table 2, using only
CPUs) five times and show results in Fig. 6. The distribution on 10
nodes outperforms that on 15 nodes, and staging intermediate data
in local storage performs better than staging all files in BeeGFS (up
to a 2.8× speedup). Staging/moving the input files to local storage
leads to a performance improvement (up to a 6.7× speedup). Overall,
performance improves by 15× compared to the original configura-
tion on 15 nodes. This reveals the usefulness of the proposed DFL-G
and patterns for tasks and data coordination.

6.3 Case study: DeepDriveMD
DeepDriveMD is a deep learning-driven molecular dynamics sim-
ulations workflow for protein folding [3, 45]. It consists of a four-
stage pipeline. The default configuration targets throughput per-
formance with large chunks of work and long run times. We are
interested in efficient response time.

DFL-G and caterpillar. Figure 2b shows a single iteration of
the 4-stage pipeline, consisting of simulation tasks (1), aggregator
(2), training (4), and inference (5). Figure 4b shows the cater-
pillar tree. The critical path is based on data volume. First, DFL-G
analysis (Fig. 2b) shows that training consumes 62% of the total
data volume of the pipeline. Observe that the incident edges of the
aggregated file (3) exhibit a significantly larger data out volume
as compared to the data in volume, indicating intra-task data reuse.
Second, DFL-G analysis using footprint (not shown) reveals data
non-use; only half the data produced by aggregate is used by both
consumers. Third, observe that training and inference use the same
data. This suggests a trade-off between (a) one aggregation (work
minimization) with more serialization and (b) composed aggrega-
tions that duplicate work but that occur in parallel and eliminate a
pipeline stage. However, the potential is muted because inference
relies on training. We therefore explore an alternate pipeline where
training asynchronously applies model updates. The new pipeline
co-schedules segments of the caterpillar.

Pipeline optimization. To improve response time, we increase
pipeline parallelism and reduce unnecessary data movement. We
coalesce the aggregation with both training and inference to exploit
data non-use, reduce data movement, and increase stage parallelism.
Additionally, we remove the task-data dependency between train-
ing and inference with a nested pipeline that trains asynchronously.

Stage 1
 (MD sim)

Stage 2
 (Aggregation)

Stage 3
 (Training)

Stage 4
 (Inference)

Total
0

20

40

60

80

S
ec

on
ds

Original+NFS
Original+BFS
Shortened+NFS
Shortened+BFS
Shortened+BFS+RAMDISK

Figure 7: DeepDriveMD: Execution time for Original and
Shortened pipelines, showing times for each stage and entire
workflow pipeline.

The inner loop is a shortened 2-stage pipeline that excludes ag-
gregation and training. The outer loop includes training, which
asynchronously gathers new inputs and produces outputs. For most
use cases, this approach will not substantially affect the scientific
quality of DDMD’s results.

Evaluation. We evaluate two pipelines. ‘Original’ respects the
original synchronization and uses the 4 original stages. ‘Shortened’
is the asynchronous version with 3 total stages and a 2-stage inner
loop. For response time, we use a small time-step size (100) and
execute the workflow for 5 iterations. We perform each experiment
on GPU cluster (Table 2, using both CPU and GPU) using 2 compute
nodes and 12 simulation tasks.

We evaluate five configurations. ‘Original’ stages through NFS
and BeeGFS. ‘Shortened’ additionally explores RAM-disks because
aggregation is now localized. We perform each experiment 3 times.
Figure 7 shows results. ‘Shortened’ shows the impact of a) co-
scheduling training and inference and b) local RAM-disk aggre-
gation and results in a speedup of up to 1.9×. In ‘Shortened’, BeeGFS
(better I/O parallelism) provides an additional 5.4% improvement,
while incorporating RAM-disk with BeeGFS resulted in a further
9% improvement.

6.4 Case study: Belle II Monte Carlo
In the Belle II experiments [32], Monte Carlo (MC) simulations
account for well over 50% of computation time [35, 52].

DFL-G analysis. Figure 2c shows a simplified DFL-G. Each
task executes several MC simulations, where each simulation uses

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

Scenario Pattern Ensemble Filter
S1 real no no
S2 regular no no
S3 real 4× no
S4 regular 4× no
S5 regular no 4×
S6 regular 4× 4×

Table 3: Belle II scenarios.

Cache Device Cache Scope Size
L1 DRAM Task private 64 MB
L2 DRAM Node-wide 16 GB
L3 SSD Node-wide 200 GB
L4 file system Cluster-wide 512 GB

Table 4: Cache configurations for TAZeR.

between 20–24 input files. There are two key opportunities. The
first is intra-task spatial locality due to small consecutive access
distances. The second is inter-task file reuse. In a MC campaign, this
reuse is dynamic and random. Reuse probabilities can be estimated
using a statistical model and knowledge of the number of tasks that
draw from set of input files [28].

Both opportunities suggest distributed I/O caching: per-task
caching captures intra-task locality, while shared caches (node-wide,
cluster-wide) capture inter-task reuse. We evaluate both caching
and additional data access optimizations requiring code changes.

We use an I/O intensive configuration of 16 datasets per task,
resulting in an average I/O rate of 1600 MB/s. To mimic a typical
campaign’s distributed environment, tasks run on the CPU cluster
and data is served from Data server (Table 2). The workflow is
scaled down to execute on 10 nodes, with tasks being allocated to
every core (24 cores/node), yielding 240 concurrent tasks.

Distributed caching. We evaluate distributed caching against
the typical practice of copying (FTP) each data set before task
launch. The caching redirects network and disk operations to cache
when possible. We use the TAZeR [28, 62] infrastructure configured
with four levels: task-private DRAM, node-wide DRAM, node-wide
SSD, and cluster-wide filesystem, specified in Table 4. Distributed
caching improves the execution by a factor of 10.0×.

Emulated optimizations. To explore additional optimizations,
we capture real traces, adjust the traces by how each optimization
would affect data accesses, and replay them using the BigFlowSim
emulator [28]. The emulator replays all data accesses using real
data but simulates compute. We consider six scenarios, a Baseline
and 5 combinations of three optimizations. The first optimization
regularizes access patterns by ‘defragmenting’ to increase spatial
locality. The second improves I/O locality with task ensembles that
group 4 tasks per dataset. The third improves I/O locality by con-
verting data field selections into a near-storage filter that reduces
transferred data by a factor of 4. Thus, ensembles reduce the num-
ber of schedulable tasks while filters affect transferred data. The
six resulting scenarios are defined in Table 3.

Figure 8 shows the results of the 6 scenarios from Table 3. The
figure shows (a) a breakdown of execution components and (b)
a line indicating relative execution time (secondary axis). Time 0
corresponds to the time of Scenario 6 with all data staged locally

real
ensm: no
filter: no

S1

regular
ensm: no
filter: no

S2

real
ensm: 4
filter: no

S3

regular
ensm: 4
filter: no

S4

regular
ensm: no
filter: 4

S5

regular
ensm: 4
filter: 4

S6

0

20

40

60

80

100

Ex
ec

ut
io

n
br

ea
kd

ow
n

(%
)

1/TAZeR overhead
1/task launch
1/code: filesys W
1/code: filesys R
2/task work
3/data: memory R
3/data: ssd R
3/data: filesys W
3/data: filesys R
3/data: network W
3/data: network R
Relative time

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

tim
e

(0
=

S6
+o

pt
 1

=
S1

+T
AZ

eR
)

Figure 8: Belle II Monte Carlo: Execution breakdown (bars)
and relative time (line) for each scenario (Table 3). The break-
down distinguishes between overheads of TAZeR, transfer
of code, and transfer of data, where the latter is divided into
several categories.

(‘optimal’); 1 corresponds to S1 using TAZeR. The emulation is
conservative, i.e., provides a lower bound for workflow performance
improvements by keeping compute times constant.

Individually, regularized accesses (S2) and ensembles (S3) yield a
6% and 65% improvement in execution time, respectively. Combined
(S4), the improvement is 67%. With filters and regularized access
(S5), improvement is 95%. With all three (S6), perhaps unrealistic,
improvement is ≈100%. Using the most plausible scenarios (S3, S4),
we conclude an additional 2.9–3.0× over 10.0× is possible.

Execution breakdown. The optimizations affect execution com-
ponents in different ways. Ensembles (S1 vs. S3; S2 vs. S4) mostly
affect the network read portion of data accesses, improving it by
about 2×. Compare with a nominal potential of 4× (4 tasks/ensem-
ble). Filters (S2 vs. S5) drastically affect all components of data
access time, improving them by a total of 10×. Compare with a
nominal 4× (the filtering factor). Improvements can be larger than
nominal because although total data read at the Data server stays
constant, 4× less data is transferred by it. Then, a larger fraction of
each task’s footprint remains in cache, vastly increasing accesses
in cache levels 1 and 2 (private and shared memory, respectively).
Scenarios S5 and S6 show that super-linear speedup are possible
when workflow data locality and reuse are improved.

7 RELATEDWORK
Static vs. dynamic data analysis. Data flow analysis is a well

known technique for static program analysis, program compilation
and programmer feedback; cf. [55, 58, 74]. Data flow distinguishes
between control and data dependencies, where the former repre-
sents dependencies due to conditionals and latter data use. The
primary limitation of static analysis is ambiguous data references.
In workflows, ambiguity results from input dependencies and ac-
cesses across different abstraction layers (memory vs. storage vs.
network) and programming models. Thus, we use dynamic data
flow analysis with lightweight measurement.

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

Distributed workflow representation and coordination. Most work-
flow managers represent workflows using task DAGs that do not
represent data objects [9, 13, 23, 50, 54, 59, 65]. They therefore coor-
dinate workflow execution using dependencies that are a conflation
of control and data dependencies. Workflow languages such as
Parsl [12] and Swift [72] represent distributed tasks using parallel
constructs but do not explicitly reason about data flow. The dis-
tributed scripting language Intrepydd [78] uses human annotations
to reason about data flow. In situ frameworks [11, 42, 43, 46, 61, 67]
represent workflows with more precision by distinguishing be-
tween producer-consumer and publish-subscribe coordination mod-
els. However, data is still not represented as a first class citizen.
Domain-specific coupling frameworks [30, 60] can generate cou-
pled PDE solvers based on method-specific decomposition schemes
rather than explicit representation of data.

The closest prior work on workflow representation is DFMan
[21], which schedules workflow DAGs, enriched with data nodes,
on HPC systems so as to optimize storage bandwidth. Sun’s work
[63] adopts a similar goal for coupled applications, but does not
focus on representation. Although DFMan represents producer-
consumer relations, it assumes a single, uniform pattern of data
accesses, which means there are no distinctions between relations,
either statically or dynamically. Further, the user must provide the
DAG. Our work generalizes the DAG representation to static or
dynamic flow for each producer-consumer relation, introduces sev-
eral new properties (including data reuse, rates, volumes, footprints,
parallelism). We also contribute methods for scalable measurement
and automatic opportunity analysis.

Some HPC task managers use performance feedback to refine
critical path analysis and improve scheduling [8, 64]. However,
its representation is still task based and therefore cannot capture
data flow. It also requires user-inserted source-code annotations to
initiate performance monitoring.

Workflow characterization. Workflow tools fail to capture data
reuse and locality over logical lifetimes. Workflow simulators [16,
18] can characterize workflow manager overheads from managing
dependencies, packaging, and queuing tasks [19] but do not reason
about how to reduce data movement costs through better partition-
ing or locality. There has been substantial work on caching and
staging for storage [7, 10, 13, 38, 39, 46, 61–63, 66, 70], including de-
tailed access and reuse analysis [14, 31, 37, 68, 73, 75–77]. However,
the key challenges are still ensuring task-data locality and knowing
what to cache and when.

I/O characterization and monitoring. Several tools monitor and
characterize I/O and storage system behavior. I/O tracers such as
Darshan [17] and Recorder [69] capture an application’s I/O opera-
tions [69]. I/O mining tools such as TOKIO [47] and IOMiner [71]
analyze collected traces or system I/O logs. Some of these tools
analyze I/O operations from the perspective of storage system archi-
tecture [17, 47] while others diagnose performance problems [71].
Because these tools focus on I/O operations rather than data life-
times, they do not track data flow between the I/O operations.

Several studies characterize I/O operations from the perspec-
tive of an entire supercomputer. One study [53] analyzes access
and reuse patterns for storage data (files) on a production-scale

supercomputer; another characterizes I/O behavior of HPC work-
loads [24]. Neither study captures reuse or data movement between
applications or workflow tasks.

8 CONCLUSIONS
We have introduced data flow lifecycles and described methods for
representation, measurement, analysis, visualization, and oppor-
tunity analysis. The methods are efficient. Measurement data is
independent of data volumes, accesses, and time and proportional
only to task-file instances. Opportunity analysis is linear in DFL
graph edges. Our evaluation compared DFLs on contrasting work-
flows, highlighted opportunities for remediation, and demonstrated
performance improvement of of 15×, 1.9×, and 10–30×. Our work
is released in the DataLife tool [44].

We conclude that DFLs are an effective methodology for gather-
ing insight into actionable opportunities on workflows of contrast-
ing styles. In our case studies, we explored remediation options
ranging from the relatively easy to time-consuming, i.e., from chang-
ing coordination of tasks and data movement to exploring possible
code changes with emulation. Although some of the remediation
strategies appear straightforward in hindsight, they were not ap-
parent without the insight and guidance of DFLs and opportunity
analysis.

We believe such insight will be important as converged work-
flows become more common within experimental science. As work-
flows increasingly coordinate instrument-experiment control loops,
a common challenge will be reworking the coordination between
workflow components—originally designed for small-scale or through-
put efficiency—into task and data movement rules that can deliver
required response times and quality of service. Our future work
includes exploring ways to automate suggestions for improved
scheduling and resource assignment.

ACKNOWLEDGMENTS
We thank Ryan Friese and Burcu Mutlu (Pacific Northwest National
Laboratory) for assistance with Belle II Monte Carlo results. We
thank Stephen Young (Pacific Northwest National Laboratory) for
alerting us to the terminology caterpillar tree.

This research is supported by the U.S. Department of Energy
(DOE) through the Office of Advanced Scientific Computing Re-
search’s “Orchestration for Distributed & Data-Intensive Scientific
Exploration” and the “Cloud, HPC, and Edge for Science and Secu-
rity” LDRD at Pacific Northwest National Laboratory. PNNL is oper-
ated by Battelle for the DOE under Contract DE-AC05-76RL01830.

REFERENCES
[1] 1000Genomes Workflow Git repo. https://github.com/pegasus-isi/1000genome-

workflow. Accessed: 2023-03-15.
[2] Caterpillar tree. https://en.wikipedia.org/wiki/Caterpillar_tree. Accessed: 2023-

03-15.
[3] DeepDriveMD Workflow Git repo. https://github.com/radical-collaboration/

DeepDriveMD. Accessed: 2023-03-15.
[4] Montage Workflow Git repo. https://github.com/wfcommons/pegasus-instances/

tree/master/montage. Accessed: 2023-03-15.
[5] Sankey Diagrams. https://www.data-to-viz.com/graph/sankey.html. Accessed:

2023-03-15.
[6] Seismic Cross Correlation Workflow Git repo. https://github.com/wfcommons/

pegasus-instances/tree/master/seismology. Accessed: 2023-03-15.

https://github.com/pegasus-isi/1000genome-workflow
https://github.com/pegasus-isi/1000genome-workflow
https://en.wikipedia.org/wiki/Caterpillar_tree
https://github.com/radical-collaboration/DeepDriveMD
https://github.com/radical-collaboration/DeepDriveMD
https://github.com/wfcommons/pegasus-instances/tree/master/montage
https://github.com/wfcommons/pegasus-instances/tree/master/montage
https://www.data-to-viz.com/graph/sankey.html
https://github.com/wfcommons/pegasus-instances/tree/master/seismology
https://github.com/wfcommons/pegasus-instances/tree/master/seismology

SC ’23, November 12–17, 2023, Denver, CO, USA Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan R. Tallent, Anthony Kougkas, and Xian-He Sun

[7] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan,
and Fang Zheng. 2010. DataStager: scalable data staging services for petascale
applications. Cluster Computing 13, 3 (2010), 277–290.

[8] DongH. Ahn, Xiaohua Zhang, JeffreyMast, StephenHerbein, Francesco Di Natale,
Dan Kirshner, Sam Ade Jacobs, Ian Karlin, Daniel J. Milroy, Bronis De Supinski,
Brian Van Essen, Jonathan Allen, and Felice C. Lightstone. 2022. Scalable Com-
position and Analysis Techniques for Massive Scientific Workflows. In 2022 IEEE
18th International Conference on e-Science (e-Science). 32–43.

[9] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-
flow: A Portable Abstraction for Data Intensive Computing on Clusters, Clouds,
and Grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies (Scottsdale, Arizona, USA) (SWEET ’12).
Association for Computing Machinery, New York, NY, USA, Article 1, 13 pages.

[10] Xian-He Sun Anthony Kougkas, Hariharan Devarajan. 2020. I/O Acceleration
via Multi-Tiered Data Buffering and Prefetching. Journal of Computer Science
and Technology 35, 1, Article 92 (2020), 28 pages.

[11] U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E.
Jansen, B. Loring, Z. Lukic, S. Menon, D. Morozov, P. O’Leary, R. Ranjan, M.
Rasquin, C. P. Stone, V. Vishwanath, G. H. Weber, B. Whitlock, M. Wolf, K. J.
Wu, and E. W. Bethel. 2016. Performance Analysis, Design Considerations, and
Applications of Extreme-Scale In Situ Infrastructures. In Proc. of the Intl. Conf.
for High Performance Computing, Networking, Storage and Analysis. 921–932.

[12] Yadu Babuji, AnnaWoodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Ku-
mar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde,
and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python. In Proc.
of the 28th Int. Symp. on High-Performance Parallel and Distributed Computing.
ACM, New York, NY, USA, 25–36.

[13] Martin Barisits, Thomas Beermann, Frank Berghaus, Brian Bockelman, Joaquin
Bogado, David Cameron, Dimitrios Christidis, Diego Ciangottini, Gancho Dim-
itrov, Markus Elsing, , Markus Elsing, Vincent Garonne, Alessandro di Girolamo,
Luc Goossens, Wen Guan, Jaroslav Guenther, Tomas Javurek, Dietmar Kuhn,
Mario Lassnig, Fernando Lopez, Nicolo Magini, Angelos Molfetas, Armin Nairz,
Farid Ould-Saada, Stefan Prenner, Cedric Serfon, Graeme Stewart, Eric Vaander-
ing, Petya Vasileva, Ralph Vigne, and Tobias Wegner. 2019. Rucio: Scientific Data
Management. Computing and Software for Big Science 3, 1 (Aug 2019).

[14] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving Cache
Hit Rate by Maximizing Hit Density. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). USENIX Association, Renton, WA,
389–403.

[15] Alexander Brace, Shantenu Jha, Igor Yakushin, Hyungro Lee, Heng Ma, Anda
Trifan, Li Tan, Todd Munson, Matteo Turilli, Ian Foster, and Arvind Ramanathan.
2022. Coupling streaming AI and HPC ensembles to achieve 100-1000× faster
bio-molecular simulations. In 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE.

[16] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41, 1 (2011), 23–50.

[17] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. 2011. Understanding and improving computational
science storage access through continuous characterization. ACM Transactions
on Storage (TOS) 7, 3 (2011), 1–26.

[18] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, Scalable, and Accurate Simulation of Distributed Applica-
tions and Platforms. J. Parallel and Distrib. Comput. 74, 10 (June 2014), 2899–2917.

[19] Weiwei Chen and Ewa Deelman. 2011. Workflow Overhead Analysis and Opti-
mizations. In Proc. of the 6th Workshop on Workflows in Support of Large-Scale
Science (WORKS ’11). Association for Computing Machinery, New York, NY, USA,
11–20.

[20] Xuhao Chen and Arvind. 2022. Efficient and Scalable Graph Pattern Mining on
𝐺𝑃𝑈𝑠 . In 16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). 857–877.

[21] Fahim Chowdhury, Francesco Di Natale, Adam Moody, Kathryn Mohror, and
Weikuan Yu. 2022. DFMan: A Graph-based Optimization of Dataflow Scheduling
on High-Performance Computing Systems. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 368–378.

[22] Laura Clarke, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chunlin
Xiao, Iliana Toneva, Brendan Vaughan, Don Preuss, Rasko Leinonen, Martin
Shumway, et al. 2012. The 1000 Genomes Project: data management and commu-
nity access. Nature methods (2012).

[23] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus, a workflow management system for science
automation. Future Gener Comput Syst 46 (2015), 17–35.

[24] Hariharan Devarajan and Kathryn Mohror. 2022. Extracting and Characteriz-
ing I/O Behavior of HPC Workloads. In Proc. of the 2022 IEEE Conf. on Cluster
Computing. IEEE.

[25] Sherif El-Basil. 1987. Applications of caterpillar trees in chemistry and physics.
Journal of mathematical chemistry 1, 2 (1987), 153–174.

[26] Charles M Fiduccia and Robert M Mattheyses. 1988. A linear-time heuristic for
improving network partitions. In Papers on Twenty-five years of electronic design
automation. 241–247.

[27] Rosa Filgueira, Rafael Ferreira Da Silva, Amrey Krause, Ewa Deelman, and Mal-
colm Atkinson. 2016. Asterism: Pegasus and dispel4py hybrid workflows for
data-intensive science. In 2016 Seventh International Workshop on Data-Intensive
Computing in the Clouds (DataCloud). IEEE, 1–8.

[28] Ryan D. Friese, Burcu O. Mutlu, Nathan R. Tallent, Joshua Suetterlein, and Jan
Strube. 2020. Effectively Using Remote I/O For Work Composition in Distributed
Workflows. In Proc. of the 2020 IEEE Intl. Conf. on Big Data. IEEE Computer
Society.

[29] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[30] Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandié. 2009.
MOOSE: A parallel computational framework for coupled systems of nonlinear
equations. Nuclear Engineering and Design 239, 10 (2009), 1768–1778.

[31] Binny S Gill and Dharmendra S Modha. 2005. SARC: Sequential Prefetching in
Adaptive Replacement Cache.. In USENIX Annual Technical Conference, General
Track. 293–308.

[32] Takanori Hara and Belle II computing group. 2015. Computing at the Belle II
experiment. J. Phys. Conf. Ser. 664, 1 (2015).

[33] Frank Harary and Allen J Schwenk. 1973. The number of caterpillars. Discrete
Mathematics 6, 4 (1973), 359–365.

[34] Bruce Hendrickson, Robert W Leland, et al. 1995. A Multi-Level Algorithm For
Partitioning Graphs. SC 95, 28 (1995), 1–14.

[35] The Belle II Computing System. https://docs.belle2.org/record/628/.
[36] Julien Herrmann, M. Yusuf Özkaya, Bora Uçar, Kamer Kaya, and Ümit V.

Çatalyürek. 2019. Multilevel Algorithms for Acyclic Partitioning of Directed
Acyclic Graphs. SIAM Journal on Scientific Computing 41, 4 (2019), A2117–A2145.

[37] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and Zhenlin
Wang. 2016. Kinetic Modeling of Data Eviction in Cache. In Proc. of the 2016
USENIX Conference on Usenix Annual Technical Conference (Denver, CO, USA)
(USENIX ATC ’16). USENIX Association, Berkeley, CA, USA, 351–364.

[38] Florin Isaila, Javier Blas, Jesus Carretero, Robert Latham, and Robert Ross. 2010.
Design and evaluation of multiple-level data staging for blue gene systems. IEEE
Transactions on Parallel and Distributed Systems 22, 6 (2010), 946–959.

[39] Florin Isaila, Jesus Carretero, and Rob Ross. 2016. CLARISSE: A Middleware for
Data-Staging Coordination and Control on Large-Scale HPC Platforms. In 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). 346–355.

[40] Alex BW Kennedy and H Riall Sankey. 1898. The thermal efficiency of steam
engines. InMinutes of the Proceedings of the Institution of Civil Engineers, Vol. 134.
Thomas Telford-ICE Virtual Library, 278–312.

[41] B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal 49, 2 (1970), 291–307.

[42] Sriram Lakshminarasimhan, David A. Boyuka, Saurabh V. Pendse, Xiaocheng
Zou, John Jenkins, Venkatram Vishwanath, Michael E. Papka, and Nagiza F.
Samatova. 2013. Scalable in Situ Scientific Data Encoding for Analytical Query
Processing. In Proc. of the 22nd Intl. Symp. on High-Performance Parallel and
Distributed Computing. Association for Computing Machinery, New York, NY,
USA, 1–12.

[43] Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk
Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending
from the Ashes of Strawman. In Proce. of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization. Association for Computing Machinery,
New York, NY, USA, 42–46.

[44] DataLife. https://github.com/pnnl/datalife.
[45] Hyungro Lee, Matteo Turilli, Shantenu Jha, Debsindhu Bhowmik, Heng Ma,

and Arvind Ramanathan. 2019. Deepdrivemd: Deep-learning driven adaptive
molecular simulations for protein folding. In 2019 IEEE/ACM Third Workshop on
Deep Learning on Supercomputers (DLS). IEEE, 12–19.

[46] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl
Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, Manish Parashar,
Nagiza Samatova, Karsten Schwan, Arie Shoshani, Matthew Wolf, Kesheng Wu,
and Weikuan Yu. 2014. Hello ADIOS: the challenges and lessons of developing
leadership class I/O frameworks. Concurrency and Computation: Practice and
Experience 26, 7 (2014), 1453–1473.

[47] Glenn K Lockwood, Nicholas J Wright, Shane Snyder, Philip Carns, George
Brown, and Kevin Harms. 2018. TOKIO on ClusterStor: connecting standard tools
to enable holistic I/O performance analysis. Technical Report. Lawrence Berkeley
National Lab.(LBNL), Berkeley, CA (United States).

[48] Kshitij Mehta, Ashley Cliff, Frédéric Suter, Angelica M. Walker, Matthew Wolf,
Daniel Jacobson, and Scott Klasky. 2022. Running Ensemble Workflows at Ex-
treme Scale: Lessons Learned and Path Forward. In 2022 IEEE 18th International
Conference on e-Science (e-Science). 284–294.

https://docs.belle2.org/record/628/
https://github.com/pnnl/datalife

Data Flow Lifecycles for Optimizing Workflow Coordination SC ’23, November 12–17, 2023, Denver, CO, USA

[49] Andre Merzky, Matteo Turilli, Mikhail Titov, Aymen Al-Saadi, and Shantenu Jha.
2022. Design and Performance Characterization of RADICAL-Pilot on Leadership-
Class Platforms. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
818–829.

[50] D. Oleynik, S. Panitkin, M. Turilli, A. Angius, S. Oral, K. De, A. Klimentov, J. C.
Wells, and S. Jha. 2017. High-Throughput Computing on High-Performance
Platforms: A Case Study. In 13th IEEE Intl. Conf. on e-Science. 295–304.

[51] M. Yusuf Özkaya, Anne Benoit, and Ümit V. Çatalyürek. 2020. Improving Locality-
Aware Scheduling with Acyclic Directed Graph Partitioning. In Parallel Processing
and Applied Mathematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra,
and Konrad Karczewski (Eds.). Springer International Publishing, Cham, 211–223.

[52] Silvio Pardi, Guglielmo de Nardo, and Guido Russo. 2016. Computing at Belle II.
Nuclear and Particle Physics Proceedings 273–275 (2016), 950–956.

[53] Tirthak Patel and Suren Byna. 2020. Uncovering Access, Reuse, and Sharing
Characteristics of I/O-Intensive Files on Large-Scale Production HPC Systems..
In Proceedings of the 18th USENIX Conference on File and Storage Technologies,
2020.

[54] Kassian Plankensteiner, Radu Prodan, Matthias Janetschek, Thomas Fahringer,
Johan Montagnat, David Rogers, Ian Harvey, Ian Taylor, Ákos Balaskó, and Péter
Kacsuk. 2013. Fine-Grain Interoperability of Scientific Workflows in Distributed
Computing Infrastructures. Jrnl of Grid Computing 11, 3 (01 Sep 2013), 429–455.

[55] Antoniu Pop and Albert Cohen. 2013. Openstream: Expressiveness and data-flow
compilation of openmp streaming programs. ACM Transactions on Architecture
and Code Optimization (TACO) (2013).

[56] Marko A Rodriguez and Peter Neubauer. 2010. Constructions from dots and
lines. Bulletin of the American Society for Information Science and Technology 36,
6 (2010), 35–41.

[57] Mats Rynge, Gideon Juve, Jamie Kinney, John Good, Bruce Berriman, Ann Merri-
hew, and Ewa Deelman. 2013. Producing an infrared multiwavelength galactic
plane atlas using montage, pegasus and amazon web services. In 23rd Annual
Astronomical Data Analysis Software and Systems, ADASS, Conference.

[58] Philipp Schaad, Tal Ben-Nun, and Torsten Hoefler. 2022. Boosting Performance
Optimization with Interactive Data Movement Visualization. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 64, 16 pages.

[59] Malachi Schram. 2019. The data management of heterogeneous resources in
Belle II. EPJ Web Conf. 214 (2019), 04031.

[60] S. R. Slattery, P. P. H. Wilson, and R. P. Pawlowski. 2013. The Data Transfer Kit: A
geometric rendezvous-based tool for multiphysics data transfer. American Nuclear
Society - ANS, United States.

[61] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar. 2018. Stacker:
An Autonomic Data Movement Engine for Extreme-Scale Data Staging-Based
In-Situ Workflows. In Proc. of the Intl. Conf. for High Performance Computing,
Networking, Storage, and Analysis. 920–930.

[62] Joshua Suetterlein, Ryan D. Friese, Nathan R. Tallent, and Malachi Schram. 2019.
TAZeR: Hiding the Cost of Remote I/O in Distributed Scientific Workflows. In
Proc. of the 2019 IEEE Intl. Conf. on Big Data. IEEE Computer Society, 383–394.

[63] Qian Sun, Tong Jin, Melissa Romanus, Hoang Bui, Fan Zhang, Hongfeng Yu, He-
manth Kolla, Scott Klasky, Jacqueline Chen, and Manish Parashar. 2015. Adaptive
Data Placement for Staging-Based Coupled Scientific Workflows. In Proceedings
of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis (Austin, Texas) (SC ’15). Association for Computing Machinery,
New York, NY, USA, 12 pages.

[64] KyleM. Tarplee, Ryan Friese, AnthonyA. Maciejewski, and HowardJay Siegel.
2015. Efficient and Scalable Pareto Front Generation for Energy and Makespan in
Heterogeneous Computing Systems. In Recent Advances in Computational Opti-
mization. Studies in Computational Intelligence, Vol. 580. Springer International
Publishing, 161–180.

[65] Matteo Turilli, Mark Santcroos, and Shantenu Jha. 2018. A comprehensive
perspective on pilot-job systems. ACM Computing Surveys (CSUR) 51, 2 (2018),
1–32.

[66] Venkatram Vishwanath, Mark Hereld, Vitali Morozov, and Michael E. Papka.
2011. Topology-aware data movement and staging for I/O acceleration on Blue
Gene/P supercomputing systems. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–11.

[67] V. Vishwanath, M. Hereld, and M. E. Papka. 2011. Toward simulation-time data
analysis and I/O acceleration on leadership-class systems. In 2011 IEEE Symp. on
Large Data Analysis and Visualization. 9–14.

[68] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.
2015. Efficient MRC Construction with SHARDS. In 13th USENIX Conference on
File and Storage Technologies (FAST 15). USENIX Association, Santa Clara, CA,
95–110.

[69] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient parallel I/O tracing and analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 1–8.

[70] Teng Wang, Suren Byna, Bin Dong, and Houjun Tang. 2018. UniviStor: Inte-
grated Hierarchical and Distributed Storage for HPC. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). 134–144.

[71] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas Wright, and
Suren Byna. 2018. Iominer: Large-scale analytics framework for gaining knowl-
edge from i/o logs. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 466–476.

[72] Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz,
and Ian Foster. 2011. Swift: A language for distributed parallel scripting. Parallel
Comput. 37, 9 (2011), 633 – 652.

[73] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and Andrew
Warfield. 2014. Characterizing Storage Workloads with Counter Stacks. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 335–349.

[74] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion
Mane, Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg.
2017. Visualizing dataflow graphs of deep learning models in tensorflow. IEEE
transactions on visualization and computer graphics (2017).

[75] Junyao Yang, Yuchen Wang, and Zhenlin Wang. 2021. Efficient Modeling of Ran-
dom Sampling-Based LRU. In 50th International Conference on Parallel Processing
(Lemont, IL, USA) (ICPP 2021). Association for Computing Machinery, New York,
NY, USA, Article 32, 11 pages.

[76] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin
Cheng. 2020. OSCA: An Online-Model Based Cache Allocation Scheme in Cloud
Block Storage Systems. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 785–798.

[77] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, and
Xiaoming Li. 2011. Low Cost Working Set Size Tracking. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical Conference (Portland, OR)
(USENIXATC’11). USENIX Association, USA, 17.

[78] Tong Zhou, Jun Shirako, Anirudh Jain, Sriseshan Srikanth, Thomas M. Conte,
Richard Vuduc, and Vivek Sarkar. 2020. Intrepydd: Performance, Productivity, and
Portability for Data Science Application Kernels. In Proceedings of the 2020 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Virtual, USA) (Onward! 2020). Association for
Computing Machinery, New York, NY, USA, 65–83.

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
doi.org/10.5281/zenodo.7846089

ARTIFACT IDENTIFICATION
A critical performance challenge in distributed scientific workflows
is coordinating tasks and data flows on distributed resources. To
guide these decisions, this paper introduces data lifecycle analysis.
Workflows are commonly represented using directed acyclic graphs
(DAGs). Data Flow lifecycles enrich task DAGs with data objects
and properties that describe data flow and how tasks interact with
that flow. Lifecycles enable analysis from several important perspec-
tives: task, data, and data flow. This paper describes representation,
measurement, analysis, visualization, and opportunity identifica-
tion for data flow lifecycles. Our measurement is both distributed
and scalable, using space that is constant per data file. We use
lifecycles and opportunity analysis to reason about improved task
placement and reduced data movement for five scientific workflows
with different characteristics. Case studies show improvements of
15x 1.9x, and 10–30x.

Our work is implemented in the DataLife toolsuite. There are
three steps.

The first step is monitoring a workflow’s I/O during executions
with representative inputs. DataLife’s monitoring tool overrides
I/O calls using typical dynamic linking techniques, e.g., Linux
LD_PRELOAD. DataLife focuses on POSIX and C I/O, including
open, close, read, write, fseek, etc.

Second, DataLife constructs a data flow lifecycle graph (DFL).
A DFL is a property graph where both vertices and edges can
be annotated with property values formed from raw histogram
statistics. Both tasks and data files become vertices in the graph. A
read operation (by a consumer task) is denoted by a directed edge
from a data source (vertex) to a task sink. A write operation (by a
producer task) is denoted by a directed edge from a task source to
a data sink. Each directed edge in the graph is annotated with a
lifecycle property value representing execution times, data volumes,
footprints, flow rates, and access patterns.

The third step is analysis and visualization. To visualize data flow
lifecycle graphs, DataLife generates Sankey diagrams, a representa-
tion designed for data flows. To highlight interesting graph entities
and relations quickly, DataLife associates property values with
them, forms a projection of the entity, and rank orders the results.
Finally, DataLife finds opportunities for performance improvement
based on DFL patterns.

REPRODUCIBILITY OF EXPERIMENTS
We have focused on the 1000 Genomes scientific workflow in the
article. See the description below.

1000 Genomes: The 1000 Genomes project studies the genomes of
2504 individuals from 26 populations to understand human genetic
variation.

The code artifact includes three parts: the monitoring tool, the
program and scripts for visualizing the DFLs, and the performance

evaluation scripts for analysis. To ease the reproducibility, we pro-
vide an input file produced by the monitoring tool in the inputs/
directory and the entrypoint script scripts/run.sh which exe-
cutes a series of commands to reproduce the DFLs in a pdf format.
The visualization takes the collected I/O states as input and gen-
erates the DFL graphs, including the ranking table (Figure 3), and
caterpillar trees (Figure 4.a and Figure 5) for the 1000 Genomes
scientific workflow.

The performance evaluation part is located under the ‘Perfor-
mance’ directory. The Python notebook will generate the per-
formance plot of 1000 Genomes (Figure 6). This Python note-
book takes as input the performance numbers generated by the
source code under the 1000genome_perf_number directory. To
generate the performance, look for the SBATCH scripts with
distinct names developed for different setups. The SBATCH
scripts ask for 10 to 15 nodes to run with SLURM. The other
files under the Performance/1000genome_perf_number direc-
tory are either input or binary files. For convenience, we have
saved the 1000 Genomes executables in 1kgenome_bin under the
1000genome_perf_number/ directory.

Estimation of the execution time to execute the experiment work-
flow:

Our DFL analysis is quick and efficient and can execute each
experiment workflow in less than a few minutes. We observe the
artifacts to complete our DFL results in a minute or so from the
experiments in the paper. It may execute larger experiments in a
relatively short amount of time.

ARTIFACT DEPENDENCIES & REQUIREMENTS
There are no specific hardware requirements to run AE, but the
minimum resources will be

• x86 64-bit CPU
• 1 GB disk space (for cloning inputs from git repo)

The most modern operating systems will be sufficient to run AE,
including:

• Mac OS X
• Linux Debian, RHEL and CentOS

For the software environment, we use:

• Python 3.7+
• networkx
• plotly
• pandas
• matplotlib
• gcc 7.5.0+

packages for the DAG graph and Sankey visualization, respec-
tively. For the full list of requirements is provided in the file
(https://github.com/pnnl/datalife/blob/main/src/requirements.txt)

Lee, et al.

ARTIFACT INSTALLATION & DEPLOYMENT
PROCESS
The requirement for evaluating Dataflow Lifecycles is to obtain all
of the artifacts. First, we must ensure you have 1) input data and 2)
software packages available and then repeat the process to obtain
the results provided in the original study.

0.1 Docker Image
With the 1000 Genomes workflow application, the Docker image is
provided to download:

docker pull hrlee/dataflow:sc23

You will find the scripts to run and the input file inside the container.
First, you obtain the bash shell prompt:

docker run -it hrlee/dataflow:sc23 bash

0.2 Scripts to Run
We provide a list of commands to repeat analysis steps to capture
the results of the original study in chronological order. The 1000
genomesworkflow is a central application to artifacts for evaluation,
and the following commands will include all of the key components
described in the paper.

0.2.1 One-shot script. is to reproduce the figures of the original
article.

scripts/run.sh

This one-shot script runs all of the commands below.

0.2.2 Producer-Consumer Ranking Table in Figure 2 (f). is repro-
ducible by:

python scripts/1000genome_dfl.py –task
ranking

and the result is saved in the name of
1kgenomes-producer-consumer-ranking-table.csv.

0.2.3 DFL caterpillars in Figure 4.(a). is reproducible by:
python scripts/1000genome_dfl.py –task
ctree

and the result is saved in the name of 1kgenomes-ctree.pdf

0.2.4 DFL caterpillar by data branches and task joins in Figure 5. is
reproducible by:

python scripts/1000genome_dfl.py –task
dflg-ctree

and the result is saved in 1kgenomes-dflg-ctree.pdf.
All the output files can be found in the results directory.

0.2.5 Multi-storage tier in Figure 6. is to show the tasks parallelism,
distribution design, and data staging strategies using 1000 genomes
application. We provide instructions to replicate a similar comput-
ing environment using Chameleon Cloud, which has a separate
page for deploying Chameleon Cloud in two options: OPT1 Running
tests on general compute nodes (where HDD/SDD and /dev/shm
tmpfs are provided) and OPT2 Running tests on storage hierarchy
node, where NVME is mounted additionally.

1kg-tiered-06262023 image is prepared in the SC23 Repro-
ducibility project for managing different storage options. You may

launch a Chameleon Cloud instance with this image to have a
storage tier including HDD and SSD.

It is also worth noting that ChameleonCloud has limited options
for storage tiers, e.g., two storage_hierarchy nodes (NVMe/SSD)
out of 586 compute nodes. Therefore, we can only replicate the
performance of file system resources mostly available, i.e., SATA
Hard Drive Disks using general computing node instances (OPT1)
to evaluate the filesystem performance.

The instruction for using Chameleon with the options:
https://github.com/pnnl/datalife/tree/main/artifacts_sc23/
chameleon_scripts/README.md

OTHER NOTES
After much discussion with AE organizers, it makes sense for us to
include single-node execution and eliminate multi-node parallelism,
as ChameleonCloud does not support the SLURM cluster platform
or parallel filesystems. The benefit of our DFL-G analysis is that
we can still identify the patterns of data flow lifecycles indepen-
dently from the execution methods and find congested data flow
and significant tasks from Sankey diagrams and caterpillar trees.
We select the 1000 genomes workflow application (Section 6.2 in
the paper) that can be executed on a single Chameleon instance.
Finally, the DLF analysis will recover all latent parallelism even
if it was executed serially, and we can still match it to the paper
results conceptually. Because of that our approach, the DFL-DAG’s
structure is independent of execution, coordination framework, and
resource assignment as long as multiple workflow executions of
the same input have the same DAG.

It is also worth noting that ChameleonCloud hasminimal options
for storage tiers, e.g., two storage_hierarchy nodes (NVMe/SSD)
out of 586 compute nodes. Therefore, we can only replicate the per-
formance of file system resources mostly available, i.e., SATA Hard
Drive Disks using general computing node instances to evaluate
the filesystem performance.

View publication stats

https://github.com/pnnl/datalife/tree/main/artifacts_sc23/chameleon_scripts/README.md
https://github.com/pnnl/datalife/tree/main/artifacts_sc23/chameleon_scripts/README.md
https://www.researchgate.net/publication/375576212

	Abstract
	1 Introduction
	2 Overview
	3 Distributed Measurement
	4 Data Flow Lifecycle Graphs
	4.1 Lifecycle graphs, DAGs, and templates
	4.2 Lifecycle properties
	4.3 Perspectives, entities, and ranking
	4.4 Visualizing lifecycles

	5 Insight and Opportunities
	5.1 Narrowing the opportunity search
	5.2 Patterns from data relations
	5.3 Patterns from task relations
	5.4 Patterns from task-data compositions

	6 Evaluation
	6.1 Workflow overview
	6.2 Case study: 1000 Genomes
	6.3 Case study: DeepDriveMD
	6.4 Case study: Belle II Monte Carlo

	7 Related work
	8 Conclusions
	References

