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ABSTRACT
Many applications foreseen for exascale era should process
huge amount of data. However, the IO infrastructure of cur-
rent supercomputing architecture cannot be generalized to
deal with this amount of data due to the need for excessive
data movement from storage layers to compute nodes lead-
ing to limited scalability. There has been extensive studies
addressing this challenge. Decoupled Execution Paradigm
(DEP) is an attractive solution due to its unique features
such as available fast storage devices close to computational
units and available programmable units close to file system.

In this paper we study the effectiveness of DEP for a well-
known data-intensive kernel, disk-to-disk (aka out-of-core)
sorting. We propose an optimized algorithm that uses al-
most all features of DEP pushing the performance of sort-
ing in HPC even further compared to other existing solu-
tions. Advantages in our algorithm are gained by exploiting
programming units close to parallel file system to achieve
higher IO throughput, compressing data before sending it
over network or to disk, storing intermediate results of com-
putation close to compute nodes, and fully overlapping IO
with computation. We also provide an analytical model for
our proposed algorithm. Our algorithm achieves 30% better
performance compared to the theoretically optimal sorting
algorithm running on the same testbed but not designed to
exploit the DEP architecture.

Keywords
Decoupled execution paradigm, disk-to-disk sorting, perfor-
mance optimization, parallel file system, parallel IO

1. INTRODUCTION
Many scientific applications running on HPC systems are
dealing with ever increasing amount of data [10, 24]. In
many of these applications most of the execution time is
spent in IO where large amounts of data is written to and/or
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read from storage layers [22]. HPC systems offer a fast in-
terconnection network and flexible IO infrastructure that
makes them very attractive for many Big Data analytics as
well [6, 12, 16–18, 20, 27]. Large-scale machine learning and
graph analytics are just a few examples of such analytics
that has arisen in current HPC systems [2,11].

On the other hand, current HPC systems are not well-suited
for emerging data-intensive applications. Not only is the
computation rate of current multi-core/many-core architec-
tures greater than the data access rate in storage devices,
but also the improvements in computation rate follow a
faster trend compared to the improvements in data access
rate [13, 15]. This causes the so called “IO-wall” problem in
which the gap between computation rate and data access
rate grows continuously.

Extensive research is done to propose architectural improve-
ments to the current HPC environments for data-intensive
applications. One proposed solution is the use of more suit-
able devices such as solid-state drives (SSD) and phase-
change memories (PCM) in the IO hardware stack [8, 21].
Although this solution reduces the gap between computa-
tion rate and data access rate, it still does not solve the
IO-wall problem. Another proposed solution is the addition
of computational units closer to the actual data [5, 26, 29].
This solution enables decoupling and shipping data-intensive
operations closer to data, reducing data movement all the
way across the network from storage layers to main compu-
tational units. For most users, however, available compu-
tational units closer to data usually have limited capability
and lack flexibility in programming, making the second so-
lution difficult to exploit.

One promising system architecture proposed for data-in-
tensive computing is the Decoupled Execution Paradigm
(DEP) [7, 9]. DEP decouples nodes into Data Nodes (DN)
and Compute Nodes (CN). CNs are attached via a fast net-
work and do not have any persistent storage device. These
nodes are similar to main computational units in commonly
used current supercomputing architectures, and are suitable
for computational intensive operations. DNs are usually
beefy nodes with local SSDs suitable for data-intensive oper-
ations. Data nodes are decoupled further into Compute-side
Data Nodes (CDN) and Storage-side Data Nodes (SDN).
SDNs are connected to storage devices with a fast network,
and similarly, CDNs are connected to CNs with a fast net-
work. With these programmable beefy DNs, DEP offers
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generality and flexibility in data-intensive operations that
other data-intensive architectures do not provide in an easy
way.

In this paper we investigate the effectiveness of DEP, both
analytically and practically, through a well-known data-in-
tensive kernel, disk-to-disk sorting. Our algorithm is de-
signed for efficient sorting of a data-set that is too large to
fit into aggregate available RAM1. Our contributions are the
following:

• We introduce a new sorting technique in the context
of DEP that effectively uses almost all features of the
DEP system architecture. We demonstrate that the
total execution time of our algorithm is almost equiv-
alent to the aggregate time needed to read the entire
data from disk and write it back to disk. In other
words, we show that the actual computation (sorting)
and reading/writing of intermediate data is almost en-
tirely overlapped with reading the input and writing
the output.

• We analytically model the proposed sorting algorithm
to justify our design choices, and show the accuracy of
our model.

• We demonstrate that our approach in DEP achieves
30% better performance compared to the theoretically
optimal sorting algorithm running on the same testbed
but not exploiting the DEP architecture.

2. DISK-TO-DISK SORTING ALGORITHM
Our design of disk-to disk sorting was driven by the need to
utilize all the different parts of the DEP architecture. SDNs
are connected to the file system, therefore will be responsible
for reading the input, distributing it appropriately to the
remaining nodes in the system, and writing the final result
back to the file system. CDNs, being connected to fast local
SSDs, will be responsible for storing intermediate results.
Finally, the CNs, being the most numerous type of nodes
in the DEP architecture, will perform the main part of the
computation.

The disk-to-disk sorting algorithm is divided into two phases,
the read phase and the write phase. During the read phase,
input data is read by the SDNs and distributed to the CNs,
which perform some initial processing and send the data for
intermediate storage to the CDNs. The end of the input
data identifies the end of the read phase and the beginning
of the write phase. During the write phase, CDNs send the
intermediate results to CNs in an appropriate order. The
CNs then compute the final result and send the sorted data
to SDNs for storage.

The algorithm is capable of handling skewed data distribu-
tion using similar sampling technique discussed in [28]. Data
sampling can be done amongst SDNs right before the first
time they communicate with CNs. However, for the sake
of simplicity, the algorithm we describe here (and also the
analysis in Section 3) assumes that the input data follows
a uniform distribution with known minimum and maximum
values. Hence, we assume that throughout the entire sort-
ing process, each CN deals only with a specific predefined
subrange of the data. In order to achieve balance in the
amount of data being processed by each CN, the subrange

1Code and full report at: github/heslami/dep-sort

of the i-th CN is defined as [ i(max−min)
NUM CN

, (i+1)(max−min)
NUM CN

−1].
Also, since the CNs are the most numerous type of nodes,
each SDN will eventually collect sorted data from a set of
CNs with consequtive assigned subranges. The set of CNs
assigned to each SDN is predefined, based on an internal
ranking of the SDNs.

The following sections provide a more detailed description of
operations done in different types of nodes during the read
and write phases of the algorithm.

2.1 Read Phase
During the read phase (algorithms 1, 2, and 3), the SDNs
read data from the disk in batches, sort these batches, and
send them to the appropriate CNs after compressing them.
The SDNs use non-blocking MPI-IO read calls and double-
buffering to efficiently read data through the storage device
network. Each SDN overlaps reading the next data batch
with processing of the current data batch. The process-
ing involves sorting, partitioning, and compressing the data.
First, the current data batch is sorted into sorted runs us-
ing local thread parallelism. The sorted runs in turn are
merged with the already sorted data found in the SDN’s
memory (represented by the Mem1 and Mem2 buffers in the
pseudocode). When the SDN’s memory is full, the sorted
data are partitioned according to the CN subranges and each
partition is compressed and sent to the corresponing CN.
Again, the sending time is overlapped with the combined
IO, processing, and compressing time. Moreover, sending
compressed sorted data allows for smaller messages as the
compression ratio for sorted data is higher.

Each CN waits for messages of sorted data sent from SDNs.
While waiting for the next message, it decompresses and
merges the latest received data with data already found in
its memory. When the CN’s memory is full, it sends the data
to its assigned CDN as a series of compressed chunks. The
size of the chunk is a user defined constant and the function
call chunk(i) computes the range of the i-th chunk. Note
that each series of chunks contains sorted data belonging to
the CN’s predefined range. The compressing plus sending
opeartions are overlapped with the rest of the operations.

Finally, each CDN collects data from all its assigned CNs
and stores them in a file on its local SSD. The file is indexed
by CN rank, series number, and chunk number for easy ex-
traction of the information. The read phase ends when all
input data has been read by the SDNs, processed through
the CNs, and stored in the form of sorted series of chunks
in the SSDs of the CDNs.

2.2 Write Phase
During the write phase (algorithms 4, 5, and 6), each CDN
serves requests from its assigned CNs for chunks from spe-
cific series. The requests come in the form of series numbers.
The CDN keeps track of the last sent chunk of each series
for each CN and always sends the next chunk in order.

Each CN merges data from all the series it produced dur-
ing the write phase into a merge buffer (represented by the
MergeBuf buffer in the pseudocode). Initially, the CN re-
quests the first chunk of each series and then it performs
a multi-way merge of all these chunks (lines 11-36 of algo-
rithm 5). If all the elements of a chunk have been merged
into the result, the next chunk of these series is requested
(lines 15-29 of algorithm 5). When the merge buffer is full,



Algorithm 1 Storage-side Data Node Read Phase

1: . Initialization
2: ReadBuf ← read()

3: . Main Loop
4: while not EOF found do

5: swap(ReadBuf, DataBuf)
6: ReadBuf ← Iread(ReadReq)
7: SortedRunsBuf ← ParallelSort(DataBuf)
8: SortedBuf ←
9: MultiWayMerge(SortedRunsBuf, SortedBuf)

10: if SortedBuf.lenght + Mem1.length > Mem2.size then

11: waitall(SendReqs)
12: for each Compute Node CN, in parallel do

13: SendBufs[CN] ← compress(Mem1[range(CN)])
14: Isend(SendBufs[CN], CN, SendReqs[CN])

15: Mem1.clear()

16: Mem2 ← merge(SortedBuf, Mem1)
17: swap(Mem1, Mem2)
18: wait(ReadReq)

Algorithm 2 Compute Node Read Phase

1: . Initialization
2: NumSeries ← 1
3: RecvBuf ← recv(FROM ANY SDN )
4: . Main Loop
5: while not received finisher do

6: swap(RecvBuf, CompDataBuf)
7: RecvBuf ← Irecv(FROM ANY SDN, RecvReq)
8: DataBuf ← decompress(CompDataBuf)
9: if DataBuf.length + Mem1.length > Mem2.size then

10: waitall(SendReqs)
11: NumChunks ← Mem1.length / CHUNK SIZE

12: for i = 1 to NumChunks, in parallel do

13: SendBufs[i] ← compress(Mem1[chunk(i)])

14: for i = 1 to NumChunks do

15: msg ← {NumSeries, i, SendBuffs[i]}
16: Isend(msg, TO MY CDN, SendReqs[i])

17: Mem1.clear()

18: NumSeries ← NumSeries + 1

19: Mem2 ← merge(DataBuf, Mem1)
20: swap(Mem1, Mem2)
21: wait(RecvReq)

Algorithm 3 Compute-side Data Node Read Phase

1: . Initialization
2: finished ← 0
3: for each compute node CN assigned to this CDN do

4: MsgBufs[CN] ← Irecv(from CN, RecvReqs[CN])

5: . Main Loop
6: while finished < assigned do

7: CN ← waitany(RecvReqs)
8: if received finisher then

9: finished ← finished + 1
10: continue

11: series ← MsgBufs[CN].series
12: chunkNo ← MsgBufs[CN].chunkNo
13: swap(MsgBufs[CN].chunkBuf, ToFileBuf)
14: MsgBufs[CN] ← Irecv(CN, RecvReqs[CN])
15: WriteToLocalFile(CN, series, chunkNo, ToFileBuf)

Algorithm 4 Storage-side Data Node Write Phase

1: . Initialization
2: finished ← 0
3: RecvBuf ← Irecv(FROM ANY CN)
4: . Main Loop
5: while finished < assigned do

6: CN ← RecvBuf.source

7: swap(RecvBuf, CompDataBuf)
8: RecvBuf ← Irecv(FROM ANY CN , RecvReq)
9: if received finisher then

10: finished ← finished + 1
11: continue

12: wait(WriteReq)
13: DataBuf ← decompress(CompDataBuf)
14: offs ← CalculateOffset(CN)
15: Iwrite at(DataBuf, offs, WriteReq)
16: wait(RecvReq)

Algorithm 5 Compute Node Write Phase

1: . Initialization
2: NumSeriesFinished ← 0
3: for s = 1 to NumSeries do

4: SeriesIndices[s] ← 0
5: SeriesFinished[s] ← false

6: send(s, TO MY CDN)
7: RecvBufs[s] ← Irecv(FROM MY CDN , RecvReqs[s])

8: . Main Loop
9: while NumSeriesFinished < NumSeries do

10: for i = 1 to MergeBuf.size do

11: min ← inf

12: for s = 1 to NumSeries do

13: if SeriesFinished[s] then continue

14: si ← SeriesIndices[s]
15: if si > SeriesBufs[s].length then

16: wait(RecvReqs[s])
17: if received series finisher then

18: NumSeriesFinished ←
19: NumSeriesFinished + 1
20: SeriesFinished[s] ← true

21: continue

22: swap(RecvBufs[s], CompSeriesBufs[s])
23: send(s, TO MY CDN)
24: RecvBufs[s] ←
25: Irecv(FROM MY CDN , RecvReqs[s])
26: SeriesBufs[s] ←
27: decompress(CompSeriesBufs[s])
28: si ← 1
29: SeriesIndices[s] ← 1

30: if SeriesBufs[s][si] < min then

31: min ← SeriesBufs[s][si]
32: minseries ← s

33: if NumSeriesFinished = NumSeries then break

34: MergeBuf[i] ← min

35: SeriesInidices[minseries] ←
36: SeriesInidices[minseries] + 1

37: if MergeBuf.length = 0 then break

38: wait(SendReq)
39: swap(MergeBuf, SendBuf)
40: CompSendBuf ← compress(SendBuf)
41: Isend(CompSendBuf, TO MY SDN , SendReq)
42: MergeBuf.clear()



Algorithm 6 Compute-side Data Node Write Phase

1: . Initialization
2: finished ← 0
3: for each compute node CN assigned to this CDN do

4: ReqSeries[CN] ← Irecv(CN, RecvReqs[CN])
5: RemainingSeries[CN] ← FileIndex[CN].length
6: for s = 1 to RemainingSeries[CN] do

7: NextChunk[CN][s] ← 0

8: . Main Loop
9: while finished < assigned do

10: waitany(RecvReqs)
11: CN ← RecvReqs.source

12: series ← ReqSeries[CN]
13: chunkNo ← NextChunk[CN][s]
14: if chunkNo > FileIndex[CN][series].length then

15: SendSeriesFinisher(CN)
16: RemaingSeries[CN] ←
17: RemaingSeries[CN] - 1
18: if RemaingSeries[CN] = 0 then

19: finished ← finished + 1
20: else

21: ReqSeries[CN] ← Irecv(CN, RecvReqs[CN])

22: continue

23: wait(SendReq)
24: SendBuf ← ReadFromLocalFile(CN, series, chunkNo)
25: Isend(SendBuff, CN, SendReq)
26: NextChunk[CN][series] ← chunkNo + 1
27: ReqSeries[CN] ← Irecv(CN, RecvReqs[CN])

it is compressed and sent to the appropriate SDN. The time
spent in compressing and sending is overlapped with the rest
of the operations. Also, the time for receiving a new chunk
is overlapped with the process of merging. The stream of
merge buffers being sent contains all the input data belong-
ing to the CN’s subrange in sorted order.

Each SDN receives sorted data buffers from its assigned
CNs, decompresses it and stores them in the disk using non-
blocking MPI-IO writes. The SDNs are responisble for stor-
ing data received from different CNs in the correct order
according to CNs’ subranges. The combined decompress-
ing and writing time is overlapped with the time between
subsequent receives from CNs.

3. PERFORMANCE MODELING
In this section we devise a simple performance model for the
read phase of SDNs. This is only one component out of the
six components of our algorithm. Due to lack of space, we
ignore the performance model of other five components, but
those can be derived in a similar way. Derived performance
model for all the components can be found in the source
code repository of the project. Our analysis is based on
system and algorithm specific parameters shown in Table 1
and Table 2. Note that we assume zero network latency in
our modeling as almost all messages in our algorithm are
large.

For SDNs, there are four major operations:

• Reading a buffer of size SDN READ SIZE from the
file system.

• Sorting the read buffer and merging it with the in-
memory buffer (with maximum size of SDN BUFFER -

SIZE). We used quicksort in parallel where each thread
performs approximately 1.5 accesses per element. For
merging, two memory accesses per element are required.

• Compressing consecutive ranges of the in-memory sorted
buffer.

• Sending compressed ranges to the CNs.

Tread = PFS_LATENCY +
SDN_READ_SIZE

PFS_BW

Tsort =

(
1.5

× SDN_READ_SIZE

CORES_PER_NODE
log

(
SDN_READ_SIZE

TYPE_SIZE× CORES_PER_NODE

)
+ 2× SDN_READ_SIZE + 2× SDN_BUFFER_SIZE

)
× 1

MEMORY_BW

Tcomp =
SDN_BUFFER_SIZE

COMPRESSION_BW× CORES_PER_NODE

Tsend =
SDN_BUFFER_SIZE× WCCR

NETWORK_BW

Based on the algorithm, Tread is overlapped with Tsort. Once
the in-memory buffer is full (after SDN_BUFFER_SIZE

SDN_READ_SIZE
rounds of

reading/sorting), compression happens. All of these opera-
tions are overlapped with Tsend. Therefore, the time it takes
for SDN from the moment it starts reading data to the mo-
ment it sends out messages to CNs (which we call SDN’s
gap) can be expressed as follows:

SDNread
gap = max

{
SDN_BUFFER_SIZE

SDN_READ_SIZE
×max {Tread, Tsort}

+ Tcomp, Tsend

}
The total effective execution time of each SDN in read phase
is the sum of all these gaps for all communication rounds
where SDN sends data to CNs. Hence, the total effective
execution time of SDNs can be expressed as:

T read
SDN =

FILE_SIZE

NUM_SDN× SDN_BUFFER_SIZE
× SDNread

gap

One can repeat the same analysis for the other five compo-
nents of our sorting algorithm and find the effective execu-
tion time of each component. Total execution time of the
algorithm, then, can be expressed as follows:

T =max
{
T read
SDN , T read

CDN , T read
CN

}
+max

{
Twrite
SDN , Twrite

CDN , Twrite
CN

}
4. EVALUATION
In this section we describe the characteristics of the testbed
system of our choice, we provide an overview of microbench-
marks chosen to find critical system parameters, and finally
we demonstrate tuning results of our implementation and
performance comparison with BigSort algorithm (Integer
sorting in CORAL benchmark [1]).



Figure 1: Topology of the experiment cluster.

4.1 System Setup
Our experiments were conducted on a 65-node SUN Fire
Linux-based cluster, with one head node and 64 computing
nodes. Each compute node was equipped with a quad-core
AMD Opteron that supports up to 8 simultaneous integer
threads. A selected number of nodes were also equipped
with SSD along with HDD. Figure 1 depicts the topology of
this cluster. We used the MPICH3.1.4 release and installed
and deployed a PVFS2 parallel file system [25] with version
OrangeFS 2.8.2.

The DEP system architecture assumes the close proxim-
ity of Storage-side Data Nodes (SDNs) to file-servers and
also Compute-side Data Nodes (CDNs) to Compute Nodes
(CNs). We chose the above testbed machine for several rea-
sons, mostly because it provides us with certain capabilities:
1) all nodes are equipped with hard drives and some with
SSDs making it easier to set specific nodes to represent dif-
ferent group of nodes (i.e. SDNs and CDNs), 2) the network
of the cluster also allows us to mimic the DEP network topol-
ogy such as high bandwidth between SDNs and file-servers
or CDNs and CNs, and 3) much like current supercomput-
ers, we are able to see the effect of the limited bandwidth
between CNs and SDNs by selecting appropriate subsets of
nodes.

Specifically, our experiment setup was as follows. We de-
ployed a PVFS2 instance on 8 nodes on switch 0 using their
HDD as the storage layer. We chose SDNs amongst available
nodes of switch 0 exploiting the high intra-node bandwidth
to the parallel file system, whereas on the other hand, we
chose CDNs and CNs amongst nodes on switches 1 and 2
using the slower inter-node link.

In the end-to-end comparison we compared our sorting algo-
rithm with BigSort. We used the same PFVS2 configuration
for BigSort. However, we chose compute nodes running Big-
Sort amongst nodes outside of switch 0, where PVFS2 was
deployed, making our comparison as fair as possible.

4.2 Benchmarking and System Parameters
We ran a collection of micro-benchmarks to discover the
values of the system parameters to better tune our imple-

Table 1: System Model Parameters

Parameter Value

PFS LATENCY 2.8 ms
PFS BW 111/162 MiB/s
SSD LATENCY 5 us
SSD BW 368 MiB/s
MEMORY BW 2.8 GiB/s
NETWORK BW 10.9 MiB/s
COMPRESSION BW 520 MiB/s
DECOMPRESSION BW 604 MiB/s
WCCR2 0.3-0.5

mentation:

• Latency of parallel file system. This is achieved by
measuring the time it takes to write/read a small por-
tion to/from a random location of a file. We executed
thousands of accesses and took the average.

• Bandwidth to parallel file system. This is achieved
by running a micro-benchmark that uses MPI-IO col-
lective operations to read/write a contiguous linear ar-
ray with 128 MiB of data from/to parallel file system.
Note that if we run the benchmark on nodes within the
same switch as PVFS2, we get 162 MiB/s bandwidth,
while if we run the benchmark from another switch
the bandwidth is 111 MiB/s. In the later case lim-
ited network bandwidth between two switches causes
a reduction of the effective IO throughput seen by the
compute nodes. The result of this benchmark signi-
fies even more the benefits of using SDNs in the DEP
architecture. In general, it is expected that the SDNs
get a higher bandwidth to parallel file system due to
their proximity to file-servers.

• Latency and bandwidth to local SSD. Similarly,
we ran the same micro-benchmarks but this time ac-
cessing the local SSD instead of the parallel file system.

• Memory bandwidth. To measure the main memory
bandwidth of our testbed machine we ran STREAM [4]
benchmark.

• Compression and decompression bandwidth. We
ran the compression algorithm on 128 MiB of data (in-
tegers) to measure this parameter.

Table 1 contains the full list of the values of system param-
eters obtained by running these benchmarks.

4.3 Performance Tuning
There are opportunities for performance optimization by
tuning two parameters: the size of the various buffers used
and the ratio of number of CNs to CDNs and SDNs. We
used the performance model to get the optimal size of the
buffers used in different types of nodes. This tuning con-
siders the memory requirement of each type of node and
the restriction that the total amount of memory usage in
each node should not exceed the total available RAM (i.e.
DRAM ALLOCATION). Table 2 contains values of tunable
and derived parameters obtained from performance model.

2Worst-case compression ratio



Table 2: Tunable and Derived Model Parameters

Parameter Value

NUM SDN 1,2,4
NUM CDN 1,2,4
NUM CN 4,8,12,16,20,24
CORES PER NODE 8
DRAM ALLOCATION 1 GiB
SDN BUFFER SIZE3 32,64,128 MiB
SDN READ SIZE 16,32 MiB
CN MERGE BUFFER R4 200 MiB
CHUNK SIZE 16,20 MiB
CN MERGE BUFFER W5 SDN BUFFER SIZE
TYPE SIZE 4 bytes (integers)
FILE SIZE 2 × (NUM SDN + NUM CDN+

NUM CN) GiB

CN RECV BUFFER SDN BUFFER SIZE
NUM CN

NUM CHUNKS CDN MERGE BUFFER
CHUNK SIZE

NUM SERIES FILE SIZE
NUM CN×CN MERGE BUFFER R

Figure 2 shows the effect of varying number of CDNs/SDNs
in performance. It is clear that with constant number of
CNs, larger number of CDNs and/or SDNs leads to lower
total execution time. In the extreme case where the num-
ber of CNs, CDNs, and SDNs are all equal, each SDN/CDN
is responsible to serve exclusively one CN. This causes the
minimum amount of contention on CDNs/SNDs, and max-
imizes the parallelization. However, in larger-scale experi-
ments, CNs are the most numerous resources available in a
system, hence matching up the number of CDNs and SDNs
to number of CNs is not usually feasible. Therefore, for the
rest of our experiments on our small-scale prototype testbed,
we assume that the number of SDNs and also the number
of CDNs is 4.

Note that the times derived from performance model are
very close in almost all cases to actual execution times in
different settings in Figure 2. This means we can simply
use the performance model to predict the optimal number
of CNs, CDNs, and SDNs in a different DEP cluster/setting
and avoid running the algorithm (which may take rather
long) for the sake of tuning.

4.4 Scalability Study
We compare our implementation with BigSort and Figure 3
depicts the weak scalability graph for execution time (3a)
and sorting rate (3b). For each experiment, the file size is
twice the aggregate memory allocation of the total number
of nodes (i.e. for 12 nodes we used 24 GiB file size, for
16 nodes we used 32 GiB file size, and so on). To have a
fair comparison, the total number of nodes reported in the
graph for DEPSort is equal to the sum of number of CNs,
CDNs, and SDNs. As mentioned before, we use 4 CDNs and
4 SDNs for DEPSort experiments. DRAM ALLOCATION
for both DEPSort and BigSort is set to 1 GiB.

First, the performance model matches almost perfectly with
the timing from the actual experiments on the cluster. This
means the performance model is accurate enough and can be

3Size of in-memory buffer
4Merge buffe size in read phase
5Merge buffe size in write phase

(a) Effect of number of CDNs (with 4 CN, 4 SDN)

(b) Effect of number of SDN (with 4 CN, 4 CDN)

Figure 2: Effect of different number of CDNs and SDNs on
performance. File size in all these experiments was 16 GiB.

used to predict the execution time of our sorting algorithm
on a DEP cluster.

Second, the average rate at which our algorithm sorts the
data is 71 MiB/s. Considering that bandwidth to PVFS2
from SDNs is 162 MiB/s, and also the fact that for sort-
ing the data we have to at least read the entire raw data
once and write the final sorted data back to the disk, the
best achievable rate is 81 MiB/s. This means our sorting
technique almost entirely overlaps computation and com-
munication with just reading the raw data and writing back
the sorted data. Note that the maximum achievable sort
rate with a non-DEP implementation on the same cluster is
55 MiB/s (due to the 111 MiB/s bandwidth from CNs to
PFVS2 mentioned in Table 1). This proves the effectiveness
of DEP architecture where having SDNs closer to parallel file
system improves the performance by at least 30% compared
to the best possible sort algorithm in a non-DEP architec-
ture.

Third, DEPSort is on average 4.4X faster than BigSort.
This is due to the entire overlap of communication and
computation with disk operation in DEPSort, and also the
fact that DEPSort compresses the intermediate results and
stores them in fast SSDs. In case of BigSort, the intermedi-
ate results are written back to the parallel file system, and
also the actual sorting algorithm reads and writes the inter-
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Figure 3: Weak scaling study of DEPSort and BigSort.

mediate data multiple times. The benefit of our algorithm in
performance, thus, comes from two different reasons: 1) the
algorithmic changes we proposed (overlapping computation
with communication, compressing the intermediate results),
and 2) from the DEP architecture itself (higher IO through-
put through SDNs and fast SSD devices close to CNs).

Lastly, as expected, the performance of DEPSort gradually
drops at larger number of nodes. This is mainly because of
the contention over CDNs and SDNs. In the largest case, we
have 20 CNs, 4 CDNs, and 4 SDNs. That is a ratio of 5 for
the number of CNs over 1 CDN/SDN. Due to the resource
limitations in our prototype DEP cluster we were not able to
run the algorithm at larger scale and discover what the best
ratio of CNs over CDNs/SDNs is for which the performance
is still acceptable.

5. RELATED WORK
Data-intensive computing is already a reality in modern su-
percomputing sites. Sorting large number of data that can-
not fit in memory (i.e. out-of-core) is just an example of
the challenges we faced when dealing with data movement
and manipulation. Disk-to-disk sorting is better explored
in the distributed environments with TritonSort [23] lead-
ing in performance in the famous Graysort benchmarks [3].
Databricks utilized Apache Spark [30] to offer a competitive
solution to the sorting problem.

However, in the HPC community where the machines are
much more capable with sophisticated networks and spe-
cialized hardware, sorting was never a real problem until
the BigData era. Sundar et al in [28] introduced a new out-
of-core sort algorithm taking advantage of the asynchronous
mechanisms present in modern supercomputers. By care-
ful use of the available storage and a formulation of asyn-
chronous data transfer, they were able to almost completely
hide the computation behind the IO latency. In addition,
Jose et al in [19] tried to demonstrate that even though
Hadoop based solutions hold the record in sorting, MPI-
based approaches can deliver similar performance. They
presented a new hybrid out-of-core sorting algorithm that
makes use of both MPI and OpenSHMEM PGAS model and
they showed that their approach outperforms existing MPI-
based implementation. However, our work introduces com-
pression of the data before going through the slower inter-

connect network that minimizes even more the execution
time and with our optimizations we were also able to almost
entirely eliminate the IO of intermediate sort results with
input and output giving our implementation an edge. More-
over, the DEP architecture with the CDNs, SDNs helped us
further reduce the execution time by storing the compressed
intermediate results closer to the CNs, and by accessing the
parallel file system at a higher rate.

The use of additional specialized nodes is not a new idea.
In [31], Zheng et al utilized different nodes in the IO path
to selectively place data and perform analytics. They in-
troduced a middleware that exploits the flexible placement
of data to offer support to a variety of simulation and an-
alytics workloads at large-scale. Similarly, in our previous
work, we introduced a novel runtime system [14] that real-
izes the DEP architecture by decoupling the data-intensive
phases and shipping them to run on specialized nodes such
as SDNs and CDNs. This paper extends the understanding
of the DEP architecture by presenting an out-of-core imple-
mentation of sorting and shows the high potentials of this
architecture when dealing with data-intensive problems.

6. CONCLUSION
As the community is moving toward exa-scale era, certain
challenges have to be addressed. One of the biggest chal-
lenges is the IO-wall problem where the computation rate is
trending faster than data access rate. Amongst the main-
stream solutions for this challenge, the DEP system archi-
tecture offers unique characteristics to significantly reduce
the amount of data movement from storage layers to com-
putational units.

In this paper we investigated potentials of DEP architecture
for a well-known data-intensive kernel, disk-to-disk sorting.
We designed an optimized algorithm in the context of DEP
capable of sorting data-sets that cannot fit into aggregate
available RAM. We presented a detailed performance model
of our algorithm and showed that the model is a close match
to reality. We demonstrated that our algorithm performs
very close to the theoretically optimal sort algorithm. Ad-
vantages of our algorithm over other sorting algorithms in
HPC are three-fold: higher IO throughput to parallel file
system by accessing data through SDNs, data compression
before communication over slower interconnect network, and



storing compressed intermediate data in SSD devices close
to computational units. We also showed that our algorithm
performs 30% faster than the theoretically optimal sort algo-
rithm that is to run on the same testbed but is not designed
to exploit the DEP architecture.

As part of our future work, we are planning to use the perfor-
mance model and verify its accuracy even further by running
our algorithm on a larger-scale newer DEP prototype. We
also plan to implement and analyze another data-intensive
application for the DEP architecture to expand our view
on effectiveness of DEP. As an ultimate goal we would like
to develop a simple-to-use programming model, similar to
OpenMP and OpenACC, that lets user change legacy data-
intensive codes minimally and yet offloads the data-intensive
parts of the application to appropriate nodes of the DEP ar-
chitecture.
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