
Apollo: AnML-assisted Real-Time Storage Resource Observer
Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye,

Anthony Kougkas, and Xian-He Sun

Department of Compute Science, Illinois Institute of Technology

{nrajesh,hdevarajan,jcernudagarcia,kbateman,llogan,jye20}@hawk.iit.edu,{akougkas,sun}@iit.edu

ABSTRACT
Applications and middleware services, such as data placement en-

gines, I/O scheduling, and prefetching engines, require low-latency

access to telemetrydata in order tomakeoptimal decisions.However,

typical monitoring services store their telemetry data in a database

in order to allow applications to query them, resulting in significant

latency penalties. This work presents Apollo: a low-latency mon-

itoring service that aims to provide applications and middleware

libraries with direct access to relational telemetry data. Monitoring

the system can create interference and overhead, slowing down raw

performance of the resources for the job. However, having a current

view of the system can aid middleware services in making more

optimal decisions which can ultimately improve the overall perfor-

mance. Apollo has been designed from the ground up to provide

low latency, using Publish–Subscribe (Pub-Sub) semantics, and low

overhead, using adaptive intervals in order to change the length of

time between polling the resource for telemetry data and machine

learning in order to predict changes to the telemetry data between

actual resource polling. This work also provides some high level

abstractions called I/O curators, which can further aid middleware

libraries and applications to make optimal decisions. Evaluations

showcase thatApollo can achieve sub-millisecond latency for acquir-

ing complex insights with a memory overhead of ∼57MB and CPU

overhead being only 7% more than existing state-of-the-art systems.

CCS CONCEPTS
•Computer systems organization→ Real-time system architec-
ture; Client-server architectures; • Information systems→Mul-

tidimensional range search;Hybrid storage layouts.

KEYWORDS
Resource Monitoring, Storage Monitoring, Storage Utilization, HPC

ClusterMonitoring, LowLatencyMonitoring,Real-TimeMonitoring

ACMReference Format:
Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman,

Luke Logan, Jie Ye,, Anthony Kougkas, and Xian-He Sun. 2021. Apollo: An

ML-assisted Real-Time Storage Resource Observer. In Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’21), June 21–25, 2021, Virtual Event, Sweden.ACM, Stockholm,

Sweden, 13 pages. https://doi.org/10.1145/3431379.3460640

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00

https://doi.org/10.1145/3431379.3460640

1 INTRODUCTION
Capturing the status of resources in a computing environment is

as fundamental as using them. Understanding how resources are

used is crucial to users, administrators, and owners for several rea-

sons [54]. For instance, one can achieve a bettermapping of compute

elements to hardware resources, identify performance bottlenecks,

detect faulty hardware, analyze and tune an application’s execution,

enable hardware-based triggers (e.g., raise interrupts on a hardware

condition), and derive accurate client/user pricing based on utiliza-

tion. However, capturing the state of resources accurately and timely

is challenging, especially in a distributed environment [58]. Modern

supercomputer architectures demonstrate complex hardware com-

positions [7, 30, 22] (e.g., multi-tiered storage, compute accelerators,

software-defined networks etc.,) that can overwhelm the underlying

monitoring services. Further, scientific applications [46, 14, 61] run

in large decoupled workflows making it harder for the developers

to keep track of resource utilization across a cluster. There is a wide

variety of monitoring services that capture, store, and provide ac-

cess to telemetry data —measurement data that describe the state

of a remote resource for a given time window. For example, Gan-

glia [37] provides distributed and federated access to telemetry data,

Lightweight DistributedMetric Service (LDMS) [1] can detect features

and events of user interest on meaningful timescales, TOKIO [36]

collects and analyzes different aspects of a system resources to un-

derstand possible bottlenecks, and lastly,Automatic Library Tracking
Database (ALTD) [21] can track linkage and execution information

of applications. These monitoring services help scientists, system

administrators, and machine owners understand how resources are

allocated, deployed, and utilized across applications and through

time. Through offline analysis of telemetry data, resource monitor-

ing can guide performance tuning, track architectural development,

and even inform future machine purchases or upgrades.

Real-time access to telemetry data is critical to application and

middleware library developers for ensuring behavior correctness

and optimizing performance. For instance, modern multi-tiered dis-

tributed buffering platforms, such as Hermes [30], leverage tier ca-

pacity and load information to guide their data distribution policy.

For every buffering request at a given timestamp, Hermes needs to

know: a) the remaining capacity of the storage tiers to ensure that the

incoming data can fit in the buffers, and b) the load of each participat-

ing buffering node to find the optimal buffering placement scheme.

Similarly, data prefetchers [20, 52] need to know the current prefetch-

ing cache size to optimally fetch new data expected to be read soon

while reducing the cache pollution. As another example, I/O sched-

ulers [31] leverage information about the current load of a resource

to better balance the load across a collection of distributed elements.

For every incoming client connection/request, such algorithms need

to direct traffic to the least busy node. Similarly, an MPI application

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

147

https://doi.org/10.1145/3431379.3460640
https://doi.org/10.1145/3431379.3460640
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3431379.3460640&domain=pdf&date_stamp=2021-06-21

can distribute work across all ranks based on the current CPU and

main memory load on the host machines [1]. Lastly, coordination

mechanisms such as leader election algorithms [45] require the set

of available resources to achieve an optimal point of synchronization

and coordination. Similarly, fault detection techniques [50] require

the set of degrading nodes to successfully predict faults. Further,

malleable storage systems [28] require a list of available resources

to be able to expand their footprint to additional machines. The

above examples highlight how important is to access telemetry data

accurately and timely to achieve optimized and correct solutions.

In this study, we highlight some critical features of distributed

monitoring services. First, to make optimal decisions, applications

need near-real time access to telemetry data that accurately reflect

the current status of the monitored resources. Typically, existing

monitoring services use file systems or relational databases to store

telemetry data. However, these storage backends were not designed

to provide any additional functionality for time-series datasets, and

thus, do not efficiently support the I/O characteristics of a moni-

toring service: fast ingestion of monitoring events and low-latency

random access of historical data. Second, telemetry data (i.e., raw

metrics from hardware) often cannot be utilized by the application

directly [6]. Additional processing and data transformations typi-

cally occur to produce higher-level information about the status of

a distributed computing environment. For example, a typical query

might be: get the total remaining capacity of a subset of nodes in a

cluster that are equipped with tier 1 storage devices. These type of

questions demand an advanced querying engine to achieve complex

data transformations, such as metric aggregation, filtering, or order-

ing. Since these operations are executed on-demand [26], a further

increase in access latency is expected. Parallel query resolution and

efficient pre-processed enriched metadata can alleviate this issue

and offer a higher level of sophistication in telemetry data. Third, re-

source monitoring is costly due to the additional overhead of polling

the resources and the potential interference with the running ap-

plication. High-resolution monitoring (i.e., high polling frequency)

may lead to increased accuracy of capturing the status of resources

but with an additional cost. In contrast, by relaxing the resolution,

monitoring services trade accuracy with performance. One way to

better balance this, is to use a dynamic — instead of a static — polling

frequency. In other words, a monitoring service should tighten the

frequency of resource polling when a significant change in status

is detected and relax it otherwise. Lastly, general purpose monitor-

ing services such as Ganglia [37] have a very wide scope of what

kind of resources they can monitor. Even though this is a great ca-

pability, generality may hurt the accuracy, resolution, and quality

of monitoring data (i.e., breadth and depth of low-level hardware

metrics). Domain-specific monitoring is necessary when one wishes

to acquire a curated set of information of a certain type of a resource.

To address the above challenges, we introduce Apollo, an ML-

assisted, real-time, and low-latency monitoring service. Apollo fo-

cuses on monitoring the storage subsystem of a distributed com-

puting environment, but ideas presented here can be easily repli-

cated for other domains as well. Apollo supports fast ingestion and

low-latency access to metrics by a custom distributed data struc-

ture, called Storage Condition Report (SCoRe), that leverages a data
streamingapproachandapublish-subscribedeliveryparadigm.With

ScoRe as its internal repository of collected metrics, Apollo uses an

advanced query engine that can resolve queries in parallel and in-

situ while maintaining a highly curated list of I/O-specific metrics.

Since Apollo is a storage resources observer, a comprehensive list

of I/O Insights is presented to help guide optimizations in I/O sched-

uling, data placement, and workload distribution. These insights

can further motivate application and middleware library developers

to build new resource-aware algorithms that would improve the

performance [43]. Lastly, to lower the cost ofmonitoringwhilemain-

taining high accuracy ofmonitoring information, Apollo first adopts

a dynamic monitoring approach where measurement intervals are

relaxed or tightened based on the change in state. To further improve

the responsiveness and accuracy of the collected metrics, Apollo

adopts a newmachine learning model, called Delphi, that is trained
to provide predicted values of a metric within polling periods. The

combinationof SCoRe, I/O Insights, andDelphi allowsApollo to offer

a highly flexible service that provides high-resolution information

to resource-aware applications with low system overhead. Apollo

demonstrates the following contributions:

(1) Stalemonitoring data is useless data! It is critical for teleme-

try data to be delivered on time to accurately capture the current

status of the resources. To address this, this paper presents the

design and implementation of SCoRE (§3.2), a fast ingestion and

low-latency data structure optimized for telemetry data.

(2) Raw monitoring data is useless data! Low-level hardware
counters demonstrate limited value to application developers

and require specialized knowledge to extract meaningful infor-

mation about the monitored resource. To address this, this paper

presents a collection of highly curated I/O Insights (§3.3 that

transform rawmetrics into high-level user-friendly knowledge.

(3) Acostlymonitoring service is useless!High-resolutionmon-

itoring leads to increased accuracy of telemetry data but demon-

strates high overheads. To lower the cost of resource monitoring

while maintaining high accuracy of telemetry data, this paper

presents two key ideas: a) dynamic polling frequency (§3.4.1),

Apollo adapts its polling frequency based on a configurable

threshold in change in status. b) Delphi predictive model (§3.4.2),
Apollo usesML techniques to forecast intermediatemetric values

within polling periods.

2 BACKGROUNDANDMOTIVATION
2.1 ExistingMonitoring Services
Resource monitoring is vital to know how the system resources are

used. It isdoneextensively inHighPerformanceComputing (HPC) [37,
1] and Cloud environments [62]. These services are aimed to pro-

vide system administrators with visualizations of the resource status

and enable offline analysis. As of late, middleware services and dis-

tributed applications [30, 20, 19, 29, 52] can make use of telemetry

data to aid them in their decisions. These services always need an

up-to-date view of the system resources, be it remaining capacity or

load on a storage resource or the overall load of a node in the system,

to make optimal decisions. However, the existing monitoring tools

cannot provide a recent view of the system for these applications

and middleware services to make optimal decisions, as monitoring

services have been designed from a system administrator perspec-

tive or from the perspective of a scientist looking to optimize their

code. In order for monitoring to be effective for these applications

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

148

and services, they need a constantly updated view of the system at a

much higher resolution than existing tools; otherwise it it can lead to

sub-optimal decisions. To support this high resolution monitoring,

existing data stores need to be capable of ingesting and querying

large amounts of data from these middleware services. Currently,

this telemetry data is stored in a centralized database [13, 9], like

PostgreSQL and Neo4J. This, however, is ineffective and can lead to

bottlenecks as they cannot support the high ingestion and querying

requirements of this high resolution resource monitoring needed

by middleware services and applications. This shift in the need for

monitoring from a user-centric view to an application-centric view

motivates us to create a new type of I/O backend for monitoring

purposes that can support high ingestion and querying rates using

a Pub-Sub paradigm and using a decoupled and embarrassingly par-

allel architecture that can keep up with the monitoring demands of

middleware services and other applications.

Inevitably, resource monitoring creates overheads. There is a

trade-off between the monitoring overhead and the resolution of

monitoring. Coupledwith the increasedmonitoring needs ofmiddle-

ware services and applications that need a fresh view of the system,

there should be a balance between monitoring and the overhead it

creates.Usingafixed time interval, asproposedbyEugenetal. [9] and

Vishwanath et al. [55], has 2 main problems. A small monitoring in-

terval caneither lead tounwanted interferenceon the systemandcan

ultimately slowdown the job running.Whilewith a largemonitoring

interval the information collected can be too stale for applications

andmiddleware services to effectivelymakeoptimal decisions. Since,

there is a trade-off between accuracy and cost. As I/O has significant

bursty behavior and is known to be generated in phases [38], thismo-

tivates us to adopt an adaptive and dynamicmonitoring interval that

can shrink the interval when the system is dynamic, keeping track of

the changes in the system, and stretch the interval when the system

is static, within a threshold, reducing the cost of monitoring when

there is no major change happening to the system. This reduces the

overall overhead of monitoring based on the changes in the system.

As hardware has gotten more and more powerful over the years,

there has been a surge in the use of machine learning techniques to

aid various applications [61, 5, 48]. Thesemodels provide predictions

which provide valuable insights of what could happen. Additionally,

telemetry data can be represented as a time-series and so machine

learning techniques [47] and time-series analysis [42] can be used to

create amachine leaningmodel that can further reduce the overhead

of polling the system for monitor data by using this model to predict

values between polling intervals, further reducing the overhead of

monitoring while providing high resolution telemetry data. There is

a motivation to reduce the overall overhead of high resolution mon-

itoring by using adaptive intervals to balance the cost of monitoring

andmaintaining an updated view of the system. There is also a moti-

vation to use a machine learning model where the cost of prediction

is lower than the cost of polling the system. These two techniques

will be used to reduce the overall cost ofmonitoring the systemwhile

simultaneously providing high resolution telemetry data.

2.2 Predicting Time-series Data
Telemetry data is time-series data which can be modeled usingMa-
chine Learning (ML) techniques such as Deep Long short-termmem-
ory (LSTM) models [47]. These models aim to capture the different

intricacies of the features using a cell which stores values over ar-

bitrary time intervals and use input, output, and forget gates to

regulate the flow of information into and out of the cell. There are

other models that use Convolutional Neural Networks (CNNs) [48]
which take advantage of the hierarchical pattern in data and create

more complex patterns using smaller, simpler patterns. They have

been shown towork aswell as Recurrent Neural Networks (RNNs) for
time-series forecasting [5]. However, these models are unsuitable in

environments that have limited resources and consequently for en-

vironments that have low overhead requirements [39]. Additionally,

thesemodels are extremely specific to the individualmetrics they are

trained on and often expensive in inference. These characteristics

make them unsuitable for building a low-latencymonitoring service.

This work proposes a novel methodology to create a lightweight

and effective model by using understanding of time-series datasets

fromMorill et. al. and neural network models catered to lowering

the requirements for low overhead environments.

3 APOLLO
Applications and middleware services require telemetry data pro-

vided by monitoring services in order to determine data placement,

perform synchronization, manage resources, etc. To do so, they

require low-latency access to metrics in order to make informed

decisions based on a highly-detailed view of the cluster. Addition-

ally, modern middleware services require aggregations of metrics to

derive valuable insights to drive optimization decisions. To this end,

Apollo is a near-real-time monitoring service which is tailored to

serve highly concurrent queries generated by middleware services.

Moreover, Apollo provides I/O-specific insightswhich are curated to

meet the complex storage status demands ofmodernmiddleware ser-

vices [30, 29]. Apollo’s design encompasses the following principles:

a) Reducing telemetry data access latency while increasing
I/O throughput:Apollo aims to provide middleware services with

low-latency access to monitoring metrics in order to give them the

latest view of the cluster status. That is, Apollo should utilize a

decoupled and embarrassingly parallel computation paradigm to

enable near-real-time maintenance/serving of telemetry data. Ad-

ditionally, middleware services require high-level I/O metrics [30,

29] aggregated at different levels to perform their tasks efficiently.

Hence, Apollo should provide a framework where low-level I/O

metrics (e.g., disk queue size, disk capacity, etc.) can be efficiently

converted into high-level insights (e.g., load of the storage resource,

or total remaining capacity of an NVMe tier). b) Reducing overall
cost of resource monitoring while increasing accuracy:mon-

itoring status for a distributed and multi-tenant cluster is complex

due to the change in optimal granularity of monitoring over time.

Apollo aims to use an adaptive and dynamic interval (i.e., the interval

of monitoring changes over time) to adapt to this dynamic nature of

the cluster and reduce the cost of monitoring while also providing

high resolution telemetry data when needed. Additionally, Apollo

also uses a machine learning model called Delphi to increase the

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

149

resolution of monitoring by predicting intermediate values and can

hence further reduce the overall cost of monitoring.

3.1 High Level Architecture
Sub-figure 1 (a) presents the overall architecture of Apollo. Apollo’s

core responsibility is to provide an end-to-end infrastructure to to

maintain and serve the current status of the Cluster/Application

Resources. To achieve this goal, Apollo utilizes SCoRe to enable

low-latency accesses to telemetry data. SCoRe is a distributed data

structure represented as a Directed Acyclic Graph (DAG) of vertices,
where each vertex collects Information from Apollo. Information is
characterized into two types: Fact and Insight, they are stored as a
tuple along with (timestamp, fact/insight, predicted/measured(0/1)).
A Fact is the smallest unit within Apollo. Facts represent the value

of a given Metric that has been captured from a particular hardware

or software resource. The Fact Vertices hook into different cluster
resources and extract Metrics from them. An Insight is a high-level
combination of one or more Facts and/or Insights. Some examples

of Insights include the total availablememory in the cluster, the aggre-

gated CPU performance of a group of compute nodes, the remaining

capacity of SSD drives, etc. Users can also instrument their code and

register/unregister custom Fact and Insight vertices during the run-

time of their application. In the figure, Fact Vertices are the sources
whereas Insight Vertices form the Sinks and Inner Vertices of SCoRe.

TheVertices of SCoRe are distinct processes in the cluster that create,

store, and serve their Information. Middleware services queryApollo

through the use of theApollo Query Engine (AQE), which resolves
queries into multiple accesses within SCoRe. The Insight and Fact
Vertices utilize the stream-paradigm [51] for data movement. This

paradigm enables the overlap of operations within vertices with the

Information movement within Apollo.

Sub-figure 1 b) presents the flowof Information through the afore-

mentioned vertices of SCoRe. It starts from the Fact Verticeswhich
capture Metrics from Cluster/Application Resources. This data flow

is labeled as “Create” in the figure. The Fact Vertices capture these
Metrics with an adaptive and dynamicmonitoring interval using the

Monitor Hook (1). The Monitor Hook sends this Metric to the Fact

Builder, which converts theMetric into a Fact. This Fact is linearized

and published (2) onto the Fact Queue, a simple queue. The Facts are

ordered by timestamp, making them linearizable and removing the

need for a priority queue. Facts from the Fact Queue can be consumed

by an Insight Vertex to generate new Insights (3). The Insight Vertex
can consume Facts (3) and/or other Insights (4) and convert them into

new Insights in the Insight Builder. Similar to a Fact Vertex, the In-
sight Vertex pushes Insights (5) into an Insight Queue, which later can
be consumed directly (6). Each Fact and Insight vertex holds a ded-
icated, in-memory queue and Archiver, which is both efficient and

scalable and stores the queue in a log. TheMonitorHooks and Insight

Builder are enhanced with an ML inference model, called Delphi,
that predicts Facts for Fact Vertices and Insights for Insight Vertices
between themonitoring intervals to increase the granularity of mea-

surements, which further increase the resolution of the telemetry

data. Time granularity differences betweenmetrics motivate the use

of a pull mechanism in order to achieve low-latency and durable re-

sults, eachmetric in a node is stored in a unique queue, as in-memory

queues are scalable and efficient. Finally, the middleware services

can query Apollo via the AQE, which uses algorithms similar to

state-of-the-art query engines such as Presto [49], converts a client

query into multiple Information access calls which are served by the

Query Executor of that Vertex. The executor parses the queue (or the

persisted log for evicted entries) using timestamp-based indexing

to perform the requested queries. This translates to highly parallel

and decoupled access to information within the Apollo service.

3.2 Improved Storage Layer
3.2.1 Storage Condition Report (SCoRe). SCoRe is the core data

structure of Apollo. It is a distributed data store based on a graph

structure, and serves data with low latency. Its main responsibilities

are to collect the telemetry data, maintain facts, generate insights,

and service various middleware libraries or clients. The distributed

graph design structure uses a Pub-Sub communication fabric that

enables it to support highly concurrent telemetry data access with

low latency. It uses libuv [34] for asynchronously setting and ma-

nipulating intervals between monitoring hook accesses, and Redis
Streams [25] formaintaining telemetry data in a queue andproviding

the Pub-Sub communication paradigm.

SCoRehas twokeycomponents: FactVerticesand InsightVertices.

Thevertices are implementedusing concurrent lock-free queues [18].

Facts are collected and then added into its queue. Fact Vertices act

as the source in SCoRe. The Insight Vertex builds insights and adds
them to its queue, similar to the fact vertex. Facts and Insights are

added only if there is a change from their previous value. Once

in the queue, the Fact or Insight can be serviced immediately.The

distributed graph-based design of SCoRe can be mathematically

modeled to calculate its time complexity. Let 𝑓 (𝑋) be a function used
to calculate an Insight using the Information vector𝑋 .ℎ is the height

of the DAG and𝑉 be the number of vertices. Each parameter 𝑥𝑖 ∈𝑋
can have a Hamming Distance up to ℎ from the vertex generating

the insight. Thus, in the worst case, the cost of propagating insights

from the source to destination is O(𝑝∗ℎ), where 𝑝 ≤𝑉 .

Figure 2 showcases a simple use case of SCoRe, where a mid-

dleware service desires information about the total storage space

available in all nodes of the cluster. Each compute node possesses an

NVMe and SSD device. Each storage node contains anHDD. As such,

twoFactVerticesgetdeployed ineverycomputenodeandone ineach

storage node. The Fact Vertices monitor the available space on the

mount point for both storage devices and add the Facts into their re-
spective queues. A similar deployment is made on the storage nodes.

The middleware can then request through AQE the status of any

individual device. Additionally, four Insight Vertices are deployed in
the cluster, where three of them are in charge of subscribing to the in-

dividual streams of all devices in the same node and aggregating data

for their Insights into their respective Insight Vertices. The final In-
sightVertexwill subscribe to theother InsightVertices andcontinually
generate a combined view of the total space available in the cluster.

3.3 I/O Insight Curation
Middleware services [30, 29, 28] require I/O-specific insights in or-

der to make data placement, computation placement, and resource

allocation decisions. Insights have been curated from popular I/O

algorithms that can be categorized into: Performance, Energy, Ac-

cess, andWorkflow info. These insights aremotivated from a variety

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

150

Figure 1: Visualization of the High Level Architecture for Apollo.

Figure 2: A simple use case of Apollo

of middleware libraries that need specific information about the

resource performance or load and other aspects of the job. These

insights provide high-level knowledge about the resource while en-

compassing various other factors. To come up with these Insights

required looking at various middleware services [30, 29, 20, 19, 23]

and reverse engineering insight curations that would be useful for

them as well as developing ideas with a clear relationship to the in-

sight categories determined above. Details of a few of these insights

is provided in Table 1. For example, in relation to the performance

category, there is an “Interference Factor”, which indicates the de-

gree to which the I/O is being interfered with. This is an insight that

could be used by an I/O scheduler to find the device that has the least

amount of I/O interference and is capable of accepting more I/O. For

the Access category, a Node Availability List is maintained which is

useful for leader election algorithms where there is a need to know

which nodes are currently online. This metric can reduce the time

to perform the election as Apollo already knows which nodes are

online. For the Energy category, there is Energy Consumption per

Transfer, which has been designed to indicate the amount of power

the node is using vs the amount ofwork the node is doing.With this a

resource allocator may decide to decommission resources that have

high energy consumption per transfer and move their workloads

somewhere else. For Workflow Info, there are Allocation Charac-

teristics. For these, Apollo uses metrics provided by Slurm. This

information can be gathered using various Slurm commands. With

these insights, Apollo provides easy hooks to get this information

which otherwise would be tedious for most middleware libraries.

3.4 High AccuracyWith LowMonitoring Cost
3.4.1 Adaptive and Dynamic Monitoring Interval. Middleware li-

braries are required tohaveup-to-date information about the various

metrics that a monitoring service like Apollo can provide. While

polling each metric, a balance needs to be made between polling

frequency and overhead. Polling at a high frequency can present a

significant bottleneck while polling less often always presents a risk

that they could miss vital information. It would be more effective

to poll less often when there is little change in a particular metric,

and more often when the metric is changing rapidly, in order to

provide reasonably up-to-date information when requested without

incurring a significant monitoring cost. In addition, there is always

the possibility that the optimal polling interval for any given metric

could change due to changing patterns, so the monitoring service

needs to be able to adapt to that change as it occurs [57].

InApollo, therewere twomain techniquesexplored inorder tocap-

ture the optimal polling interval of a workload. The techniques that

utilized include the simple parameterized method and the adaptive

parameterized method. The simple parameterized method is based

on theAdditive Increase,MultiplicativeDecrease (AIMD)method [17].

The idea behind this is thatwhen the change inmetric value iswithin

a certain user-defined threshold, Apollo can consider the value effec-

tively close enough and increase the interval by an additive constant,

when the change in metric value is not within this threshold Apollo

must decrease the value in a multiplicative fashion. The adaptive

parameterized method is an optimization of the simple parameter-

ized method, where instead of using a single change to determine

how close the value is to optimal, Apollo utilized a difference from

a rolling average of changes. This adaptive technique ensured that

changeswouldbeaccounted forby their difference fromtheexpected

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

151

(a) Model Architecture

(b) Workflow

(c) Predicting different I/O metrics

Figure 3: The Delphi predictivemodel

change rather than their difference from a recent value, which pro-

vided the benefit of accounting for non-continuous metrics which

bounced repeatedly between two or more discrete value groupings,

something that the original algorithmhad a difficult time accounting

for andwhichwas found to be a common case in certain real metrics.

3.4.2 Relaxing Measurements through Delphi. Delphi is a key com-

ponent inApollo. It aids in reducing themonitoring intervalofApollo

by utilizing machine learning techniques. Delphi utilizes aNeural
Network (NN) model to predict intermediate values between two

measurements. This allows Apollo to always have the latest view of

the resource without making the monitoring process too expensive.

Telemetry data is represented as time series data [47]. Therefore, Del-

phi applies timeseries analysis tomodel themetricsof interest.When

creating themodel Delphi needs to ensure that themodel’s inference

cost and overheads are lower than that of monitoring the resource.

Delphi Methodology: Delphi is designed with the intuition that

time-series data is made of eight key features [35].We experimented

by creating a synthetic dataset of these eight different features found

in time-series data and trained a lightweight, one-Dense layer neural

network on each of the features with a window size of five. We

then created a synthetic test dataset to ensure that the models could

accurately predict for their specific features. We noticed that it was

possible for these models to accurately predict for their specific

feature. So, we then stacked the models as seen on Sub-figure 3(a).

We set these pre-trained featuremodels to be untrainable [4] (i.e., the

weights of mathematical model are fixed and non-trainable) while

stacking it as seen in the figure. Then we add a one-Dense trainable

layer that could learn any other missing features and subsequent

noise that can be in the data. We then trained this model with a

synthetic dataset comprised of the different features. During this

process, the model learns how to combine the predictions of the

different models based on their different confidence scores and gives

the appropriate prediction. These models were built and trained

using TensorFlow, with the C API utilized to merge it with Apollo.

Delphi Verification: In order to verify the model for Delphi, the

model was trained on different synthetic datasets and tested against

different I/O metrics. In Sub-figure 3(c), the size of the bubble is the

mean absolute error, the x-axis shows the different datasets it was

tested on. In this figure, different metrics are reflected along the

x-axis, while the y-axis shows the inference cost of a givenmodel for

a particular metric and the size of bubble reflects the mean absolute

error of that model. The figure shows that the model performs well

for the different I/Ometrics and is at least comparable to amodel that

has been trained explicitly for the metric. This test is done to show

thatDelphi is a lowcostmodel that has been trainedona set of simple

synthetic datasets and can predict metrics it hasn’t been trained for.

4 EVALUATION
4.1 Methodology
4.1.1 Testbed. Weranour experiments on theAres cluster at the Illi-

nois Institute ofTechnology [24], consistingof 32 computenodes and

32 storage nodes interconnected by a 40Gb/s Ethernet network with

RoCE enabled. Each compute node consists of a dual Intel(R) Xeon

Scalable Silver 4114 (i.e.,40 cores per node), 96GB RAM and a local

250GBNVMe. Each storagenodehas a dualAMDOpteron 2384 (i.e.,8

cores per node), 32GB RAM, a 150GB SATA SSD and 1TB HDD. The

cluster runsonCentOS7.1 and theMPI libraryversion isMPICH3.3.2

and use TensorFlow 2.3.1 for training the machine learning models.

4.1.2 Workloads. ToevaluateApollo,weperformed twosets of eval-

uations. The first, a set of evaluations of the internal components

of Apollo exploring the three major components: SCoRe, Adaptive

Interval Module, and Delphi.We then evaluate the capabilities of the

data structures and the communication layer. For the second compo-

nent, we evaluate the DynamicMonitoring Interval by exploring the

system overhead it generates and the accuracy and performance of

the newapproach. Thefinal component isDelphi,wherewe evaluate

the model accuracy of the MLmodel for other time-series data, and

quantify how it reduces the overhead of monitoring. Finally, we test

Apollo against amonitoring competitor, LDMS,which iswidely used

inmanysupercomputers [60].Todoso,wewillmakeuseof anHCom-

press [19] middleware library use-case which requires I/O informa-

tion and modify it to work under both systems. We then measure

the execution time of applications working under the middleware

system and the overhead generated by the two monitoring services.

4.2 Reducing Telemetry Data Access
LatencyWhile Increasing I/O Throughput

4.2.1 Operation Analysis. Figure 4 presents the anatomy of oper-

ations in the two types of SCoRe vertex: Fact and Insight. For the

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

152

Table 1: I/O Curators

I/O Curations Definition Formalization Use Cases

1

Medium Sensitivity to

Concurrent Access (MSCA)

Indicates amount of concurrent I/O a device

can handle (DevC).

𝑁𝑢𝑚𝑅𝑒𝑞𝑠

𝐷𝑒𝑣𝐶
∗𝑀𝑎𝑥𝐵𝑊 −𝑅𝑒𝑎𝑙𝐵𝑊

𝑀𝑎𝑥𝐵𝑊

An I/O scheduler can find the device that is

well-suited for handling concurrent I/O [31, 33, 53]

2

Current Device Interference

value (Interference Factor)

Indicates the degree to which I/O is being

interfered with.

𝑅𝑒𝑎𝑙𝐵𝑊
𝑀𝑎𝑥𝐵𝑊

An I/O scheduler can find

the device that can accept more I/O [31, 33, 53]

3 FS Performance

Performance characteristics of filesystems

in the cluster

compression type, block size,

RAID level, #devices, MaxBW

DPEs can place data on fast devices or devices

with compression enable [19, 30, 56]

4 Block hotness measure of how often a block is accessed (BlockID, frequency of access)

Middleware libraries [30, 20] can use block

hottness to prefetch data appropriately

5 Device Health The current health of a device 1 -
𝑁𝑢𝑚𝐵𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠
𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝐵𝑙𝑜𝑐𝑘𝑠

DPEs can place important

data on healthy devices [30, 56, 59]

6 Network Health ping time between 2 nodes

(timestamp, nodeID-1,

nodeID-2, ping time)

DPEs can use this information to place

data in nodes with high network

responsiveness [30, 56, 59]

7 Device Fault Tolerance Fault tolerance of a device
𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙

𝐷𝑒𝑣𝑖𝑐𝑒𝐻𝑒𝑎𝑙𝑡ℎ

DPEs can place important data

on more fault-tolerant devices. [30, 56, 59]

8 Device Degradation Rate

The health of a device vs the amount of blocks

read/written over the lifetime of the device.

𝑑𝑒𝑣𝑖𝑐𝑒_ℎ𝑒𝑎𝑙𝑡ℎ

𝑡𝑜𝑡𝑎𝑙_𝑏𝑙𝑜𝑐𝑘𝑠_𝑟𝑒𝑎𝑑+𝑡𝑜𝑡𝑎𝑙_𝑏𝑙𝑜𝑐𝑘𝑠_𝑤𝑟𝑖𝑡𝑡𝑒𝑛

DPEs can place important data on devices that are

not expected to degrade anytime soon.[30, 56, 59]

9 Node Availability List Ordered list of nodes which are currently online (timestamp, list of all the available node)

Leader election algorithms need to know

which nodes are currently online [2, 12]

10 Tier Remaining Capacity The amount of capacity available in a tier

∑𝑖<=𝑛
𝑖=0 𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖−𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑈𝑠𝑒𝑑𝑖

DPEs may decide to drain the data to

a lower tier once a tier reaches a threshold. [30, 56, 59]

11

Energy Consumption

per Transfer

Indicates the amount of power a node is taking to

perform I/O

𝑃𝑜𝑤𝑒𝑟𝑃𝑒𝑟𝑆𝑒𝑐
𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑃𝑒𝑟𝑆𝑒𝑐

Decommission resources that

are not doing a lot of work [27, 40, 32]

12 System Time Request from system (e.g. ‘date‘ call or chrono::now()) (NodeID, system time)

Systems that use the system time and calculate drift to

coordinate and use physical time more effectively [28]

13 Device Load Indicates the amount of I/O a device is doing
𝐵𝑙𝑘_𝑟𝑒𝑎𝑑/𝑠+𝐵𝑙𝑘_𝑤𝑟𝑖𝑡𝑡𝑒𝑛/𝑠
𝐵𝑙𝑘_𝑟𝑒𝑎𝑑+𝐵𝑙𝑘_𝑤𝑟𝑖𝑡𝑡𝑒𝑛

DPEs can place data on devices that

are under less stress than others. [30, 56, 59]

14

Energy Consumption

Per Transfer

Indicates the amount of power the node is using vs the

amount of I/O the node is doing.

𝑝𝑜𝑤𝑒𝑟/𝑠
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠/𝑠𝑒𝑐

Decommission resources that

are not doing a lot of work [27, 40, 32]

15 Allocation Characteristics

Information about the resources that a particular

job is using

(timestamp, #nodes, distribution

of processes, bytes read/written by jobs)

Dynamic resource allocator needs

to know the resources provisioned [27, 11]

(a) Composition Fact (b) Composition Insight

Figure 4: Visualization of percentage of time spent on each
internal component

test, we deployed one Fact Vertex representing the capacity metric

and one Insight Vertex, which derives an insight from the Fact Vertex.
The test ran locally on a single node in Ares. We need to have low

overhead for different components of SCoRe and have a service that

can send data with low latency and ensure that the performance is

bounded by the monitoring hook rather than by the queue structure.

Wemeasured the percentage of time spent in different operations for

the Fact Vertex and Insight Vertex. Sub-figure 4(a) shows us that 97.5%
of the time is dominatedby themonitoringhookwhile thepublishop-

eration only costs 1.8% on the Fact Vertex and Sub-figure 4(b) shows
the percentage of time spent in different operations for the Insight
Vertex. Note that the “Other” category in this figure showcases a com-

bination of thread management combined with the computation of

(a) CPU consumption overhead (b) Memory consumption overhead

Figure 5: Apollo resource consumption and overhead

the Insight. We see that SCoRe as a data structure is high performant

while providing low latency and is not a bottleneck for the service.

4.2.2 Overhead Analysis. Although Apollo performs well and can

provide near real-time metric access and adaptive monitoring cost,

it inevitably generates some overhead on the node when collecting

data and serving the middleware layer. Thus, we need to evaluate its

overhead on CPU andMemory to show the impact that it has on the

node. We use IOR to simulate different workloads in two situations:

running IOR without Apollo and running IOR together with Apollo.

At the same time, we use Performance Analysis Tool (PAT) developed
at Intel [3], to track CPU and memory usage of Apollo on different

nodes. The breakdown of CPU usage can be seen in Sub-figure 5(a).

It shows that the Apollo node executables account for 13.32% of the

CPUoverhead.The remainingoverhead includes the IORapplication

thatweran,whichaccounts for7.2%,andvariousmonitoringservices

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

153

(a) Produce telemetry data to Apollo (b) Consume telemetry data from Apollo

Figure 6: Throughput of write and read Operation

from PAT itself. Of these modules, System Activity Report (SAR) ac-
counts for 4.51%,whilePATas awhole, incorporatingSAR,perf, grep,

and ps subsystems, accounts for 27.2%. In light of this, we see that

that Apollo is more lightweight than the PAT tool we used to track

the results, though not as lightweight as the SAR tool, which directly

accesses metrics, or the IOR application workload we ran. A compar-

ison of average memory utilization with and without Apollo can be

seen inSub-figure5(b). It showsaverysimilarmemory footprintwith

and without Apollo. The memory overhead of Apollo is on average

less than 0.1% of total memory of an Ares node, or about 57MB.

4.2.3 Throughput Analysis. In SCoRe, we need to test its scalability
and performance to establish the upper bound of the performance

of the whole service. To do so we evaluate the performance of the

publish and subscribe operations in different scenarios: scaling the

number of client threads, scaling the metric size, and scaling the

queue thread counts. To evaluate the publish throughput with vary-

ing client threads, we launched a SCoRe instance on a node and

deployed a client with various thread counts ranging from 1 to 40 on

another node. Themetric size of the publish operationwas set at 16B

with the one queue thread. During the test, each client thread con-

tinuously published 1M events to the SCoRe queue. The results are

shown in Figure 6. Sub-figure 6(a) shows that SCoRe queue reaches

a peak performance of 70K events/s with 16 client threads, beyond

which it starts suffering from performance degradation. This is a sin-

gle node test and increases linearly as we increase number of nodes.

Similarly, we evaluate the throughput of the subscribe operations.

In the first case, we deployed SCoRe with one queue thread on one

node and deployed clients on different nodes. On each node we

launched 40 threads subscribed to a remote queue, we published

16K events of metric size 16B each to the queue in each thread. Sub-

figure 6(b) shows that SCoRe scales well for 32 nodes and does not

cause significant slowdown across the whole service.

4.2.4 Latency Analysis. Apollo is required to provide low-latency
access for middleware libraries. Hence, it is very important to quan-

tify how performance varies on increasing the degree of a node and

how it varies when increasing the Hamming Distance between the

source and sink. To quantify the effects of increasing the node degree,

we deployed each nodewith 40 Fact Curators and an Insight Curator

on a separate node, which subscribes to all the Fact Curators. During

the experiment, we increase the number of nodes between 1 and

16, and measure the client’s latency to pull a new Insight from the

Insight Curator. The results are shown in Figure 7. Sub-figure 7(a),

(a) Increasing degree of Insight Vertex (b) Increasing hamming distance between

Insight Vertex

Figure 7: Change in performance when increasing node de-
gree and hamming distance

Figure 8: Cost and accuracy of fixed and AIMD-based Adap-
tivityModels

which indicates that the latency increaseswith the increase of degree

of the node until it reaches an upper bound. In addition, the cost of

handling Facts is much lower than that of monitoring the low-level

metrics. To quantify the effects of increasing the Hamming Distance

between source and sink, we first deployed 32 hook nodes and each

node has one hook on the Fact Vertex. Then we launched different

numbers of Insight Curators by increasing the layers of Insight Cu-

rators from 1 to 32. When increasing the layers, each layer relies

on its previous layer. We deployed a client node to pull data from

the top Insight Curator and measured its latency to get the latest

value from the service. Sub-figure 7(b) demonstrates latency results

in increasing the Hamming distance. We observe that the latency

increases when increasing the Hamming distance and notice a spike

in the latency at the maximum possible distance.

4.3 Reducing Overall Cost Of Resource
MonitoringWhile Increasing Accuracy

4.3.1 Adaptive and Dynamic Monitoring Interval. In order to verify
the performance of our 2 algorithms, we tested them against each

otheraswell as against staticpollingmethods.WeusedaHACCwrite

workload which was tailored with waits to ensure writing 38000

bytes of data to an NVMe every 5 seconds or a random amount of

data between 19000 and 38000 bytes to an NVMe every 5-20 seconds,

andmeasured the capacity of theNVMe over time. In order to ensure

uniformity, we captured the HACC capacity workload and replayed

itwith an emulation, so that therewould beminimal issueswith time

drift or interference between runs.In this test, we show the accuracy

and costs of various methods of adaptive polling intervals, as well as

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

154

(a) Change in capacity (b) Cost of monitoring

Figure 9: Apollo on irregular HACC-IOworkloads

compare them against static polling intervals. To evaluate this adap-

tive interval, we deploy a Fact Curator with a synthetic monitoring

hook, which replays the regular or irregular (random)HACCdataset

specified above. We test it with a static interval, an adaptive interval

with a rolling average window of size 10 (complex AIMD), and one

without a window, which is equivalent to a window size of one (sim-

ple AIMD). We played 30 minutes for each adaptivity type and com-

pared it for accuracy and cost to the 1 secondmonitoring trace. Accu-

racyhere is the ratioof callswhichwouldmatch the1secondmonitor-

ing equivalent, where cost is the ratio of the number to themaximum

numbermonitoringhook calls (1would be asmany calls as a 1 second

monitoring equivalent). Figure 8 describes the cost and accuracy

of the models we tested, with a fixed model of 5 seconds, the sim-

pleAIMDmodel and the complexAIMDmodel shownacross regular

and irregular HACC capacityworkloads. The choice between simple

AIMD and complex AIMDwill depend on the workload, and in this

case we see complex AIMD performing very accurately for irregular

workloads compared to a static monitoring interval as well as simple

AIMD, but with an associated cost. The fixed interval does very well

in the regularworkload due to it being the ideal interval of choice and

shows that for a regular workload a fixed interval could be optimal

if the conditions are right, while the simple AIMDmodel performs

alright for the regular workload also, and at significantly lower cost.

4.3.2 Relaxing Measurements through Delphi. We need to quantify

the benefit of using the Delphi model. To do so we compare the ef-

fectiveness of Apollo with and without Delphi and compare them to

a baseline where the capacity was monitored every one second. We

ranHACC-IOunder different configurations resulting in regular and

irregular workloads. We measured the change in available capacity,

under baseline or ideal conditions (1 second intervals), thenusing the

adaptive and dynamicmonitoring interval and finally using both the

adaptive and dynamic monitoring interval with the Delphi model.

The cost in Sub-figure 9(b) and 10(b) is calculated by keeping track

of the number of times the monitor hook was called. Since the cost

of calling the hook is mostly constant, higher the number of calls im-

plies higher cost. The change in capacity in Sub-figure 9(a) and 10(a)

shows the change in capacities over the course of irregular and regu-

lar workloads. From Figure 10 and 9we see that the predictivemodel

performs reasonably well for a fraction of the cost compared tomon-

itoring as often as possible. This approach provides high resolution

telemetry data at a fraction of the cost with onlyminimal loss of data.

(a) Change in capacity (b) Cost of monitoring

Figure 10: Apollo on regular HACC-IOworkloads

Figure 11: Delphimodel vs the baselinemodel

We need to ensure that we have created a general enough model

that predicts based on time-series patterns as is verified on Sub-

figure 3(c). This final model is used to predict the metrics collected.

Delphi is then compared against different LSTMmodels (the base-

line) that we trained on their specific datasets. The time it takes to

train the Delphi model is roughly 15 minutes vs 3 to 5 hours for the

baselinemodels. In this figure, the size of the bubble is the root mean

squared error, the color correlated with the 𝑅2 value and the centre

of the bubble on the y-axis corresponds to the inference time of the

corresponding model for a metric. We started by collecting data

using SAR [41] while running different workloads using FIO [10].

We collected different metrics per drive and partition every second

using the “-dbp -P ALL 1” flags on an NVMe, SSD and HDD. We

then trained an LSTMmodel for each of the collected metrics with

over 10K collected data points of the dataset and used the other

60K to test the model. We similarly tested Delphi with the different

metrics collected. To compare them on their architecture, the Del-

phi has a total of 50 parameters, of which 14 are trainable and the

rest are non-trainable. By contrast, the baseline LSTM model has

71,851 parameters, all of which are trainable. From Figure 11 we ob-

serve that the Delphi model can be used on any periodic nonrandom

time-series-like data, compared to the baseline models that can only

provide respectable inference for the specific metric they are trained

for. Note that if a bubble is not clearly visible, the root mean square

value of that model is very low and it has a high 𝑅2 value.

4.4 RealWorkloads

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

155

(a) Average latency of requests when scal-

ing

(b) Query Execution time comparison

when scaling query complexity

(c) Average CPU overhead per process in

the 16 node evaluation

Figure 12: Comparison of Apollo and LDMS

4.4.1 ApolloandLDMS. Acomparisonof theperformanceofApollo

to that of competitors under real situations is important to demon-

strate the advantages Apollo offers. For these tests, we benchmark

Apollo’s performance against the LDMS monitoring service, as it

presents a similar but simplified Insight Layer mechanism which

allows the service to aggregate results frommultiple nodes.

Our service is designed to provide telemetry data to amiddleware

library or an application. For demonstration purposes, in these tests

we use a hierarchical data placement engine [30, 19] as the example

middleware library. The middleware accepts I/O requests from an

application andmakes a decision overwhat storage layer to place the

data on. In our tests, themiddleware has access to four storage layers,

local memory, local NVMe, a remote shared Burst Buffer (BB) over
SSDsandaParallel File SystemoverHDDs.Wedesignedour testwith

a greedy placement model placing data in the fastest non-full tier.

In order to operate optimally, the middleware service requires

an accurate view of the status of the storage resources on the nodes

in the cluster to execute the placement of the request. In the ex-

periments, we measured the execution time of the resource query

performedby themiddlewaredata.A resourcequery canbevisualized
in Algorithm 4.4.1 and it is created by combining (UNION operator)

of the result of different table accesses.We define the complexity of a

query as the number of queried tables which shows the how SCoRe

can parallelize the query across different nodes in the cluster.

(a) Apollo+DataPlacement

Engine

(b) Apollo + Data Prefetch-

ing Engine

(c) Apollo + Data Replica-

tion Engine

Figure 13: Apollo aidingmiddleware libraries

1 SELECT MAX(Timestamp), metric

2 FROM pfs_capacity

3 UNION

4 SELECT MAX(Timestamp), metric

5 FROM node_1_memory_capacity

6 UNION

7 SELECT MAX(Timestamp), metric

8 FROM node_2_availability

9 ...;

Resource query example

In Sub-figure 12(a), we observe the change in average execution

timewhenquerying themonitoring servicewhile scaling thenumber

of nodes managed by the middleware service from 1 to 16. The mid-

dleware makes use of a static query complexity of 3 (the Parallel File
System (PFS) is assumed to always have space). In Sub-figure 12(b),

we see that the change in average execution time of querying the

monitor service when scaling the query complexity from 1 to 8 (with

the number of nodes managed by the monitoring service) is main-

tained at 16 nodes in all tests. In Sub-figure 12(c), we compare the

overhead of Apollo and LDMSwhen executing it at maximum scale

of 16 nodeswith a query complexity of 3. From Figure 12, we observe

that the latency ofApollo is 3.5x lower than LDMSwhile only having

an overhead of only 7%. For most cases the increase in overhead can

be considered to be negligible considering the lower latency and the

adaptive interval which ensures we have a more accurate view of

the resources on the node while balancing overhead.

4.4.2 Middleware Service with Apollo. Awareness of the status of
storage resources is vital to the performance of middleware libraries.

In this experiment, we aim to demonstrate the impact of resource-

awareness on middleware libraries for real applications. To show

this, we run various applications with 2560 processes using different

middleware libraries. We run the VPIC-IO [15] kernel, which writes

32MB per process at each time step for 16 time steps. BD-CATS [44]

reads the data generated by VPIC-IO. Lastly, Montage [8] is a col-

lection of MPI programs comprising an astronomical image mosaic

engine that reads 10MB of data per process at each time step for

16 time steps. We showcase three different middleware libraries:

aHierarchical Data Placement Engine (HDPE) [30],Hierarchical Data
Prefetching Engine (HDFE) [20] and aHierarchical Data Replication
Engine (HDRE) [23], all of which are parts of the Hermes middle-

ware ecosystem [30]. The HDPEwrites data in fast buffering targets,

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

156

allowing thedata tobe ingestedquickly. Bydefault, it utilizes a round-

robin data distribution policy for data placement, which can lead

to cases where the buffering targets are full and need to be flushed

before the new data can be ingested. TheHDFE prefetches data from

the PFS and stores them in fast prefetching caches, which also utilize

a round-robin distribution policy. However, this can result in unnec-

essary evictionswhenaprefetching cache is full, leading todata stalls

when an application attempts to read the evicted data. With Apollo,

the HDPE and HDFE can maintain an insight that utilizes metrics

tracking the remaining capacity of the different buffering targets or

prefetching caches in a list sorted by bandwidth. Therefore, it can

guarantee that, for every operation, the data is placed into buffering

targets and prefetching caches that have enough capacity, reducing

the number of flushes, evictions, and data stalls. The HDRE places

replicas of data into different replication sets to allow for higher fault

tolerance, reliability, and data availability. By default, this replication

engine uses a round-robin data distribution policy to distribute data.

This can lead to data stalls if the replication set is out of free space or

is too remote from the source. With Apollo, the replication engine

can maintain a metric that tracks the remaining capacity of each

replication set and the network latency between all the nodes. These

metrics can be used to create an insight where replication sets with

high remaining capacities and lower network latency are prioritized.

We configure each of the middleware libraries to store up to 96GB

in NVMe drives and 1TB in Burst Buffers.

From Figure 13, we observe that Apollo can aid various middle-

ware libraries and boost their performance between 10% and 20%.

These experiments do not cover every possible use-case for Apollo,

but they are indicative of the potential Apollo has to take away the

burden of gathering telemetry data efficiently and opens up the

opportunity for a new paradigm of systems that are more resource-

aware. In Sub-figure 13(a),we see that theHDPE reduces the I/O time

of VPIC by 2.3x over simply writing to the PFS. In addition, Apollo

is able to improve the performance of the HDPE by 18% over the

round-robin policy. By knowing the current capacity of the different

buffering targets, the HDPE is able to place data more intelligently

among the targets, resulting in fewer flushes and data stalls. Simi-

larly, for Sub-figure 13(b), we see that theHDFE reduces the I/O time

ofMontage by 33% over simply reading from the PFS and that Apollo

is able to improve the performance of theHDFE by an additional 16%

over the round-robin policy. This is because, by knowing the current

capacity of the different prefetching caches, theHDFE can place data

in caches that have enough capacity, resulting in fewer evictions

and unnecessary data stalls. Lastly, in Sub-figure 13(c), we see that

theHDRE increases the I/O time for VPIC, but decreases the I/O time

for BD-CATS, over simply interacting with the PFS. This is because

the HDRE writes 3x the amount of data, resulting in worse write

performance for VPIC. However, the additional replicas increase the

availability of data, improving read performance for BD-CATS. By

using Apollo, the performance of both VPIC and BD-CATS using

theHDRE improves by∼12% by placing replicas into replication sets

that have enough capacity to hold the replicas, avoiding unnecessary

data stalls. In each of these cases, the applications incur a small (<1%)

overhead by querying Apollo for the current system state. However,

this overhead is outweighed by the benefit to I/O time.

5 RELATEDWORK
To gain insights about the resource requirements of applications and

the resource utilization, numerous resource monitoring tools have

been developed recently to provide meaningful information. Gan-

glia [37] and LDMS [1] are twowidely used tools inHPC community.

Ganglia is a scalable distributed monitoring service for high perfor-

mance computing systems, which is based on a hierarchical design

aimed at federating clusters and aggregating their state. LDMS is

a scalable and lightweight monitoring service for large-scale com-

puting systems and applications introduced to monitor the low-

level metrics and provide useful information to guide development

without increasing monitoring overhead and impacting applica-

tion performance. However, both of them are focusing much on the

scalability and maintaining low performance overhead rather than

providing low latency data access and high accuracy telemetry data.

In one hand, they utilize a user defined fixed interval to collect the

low-level metric data. And there always has a trade-off between

monitoring cost and accuracy when selecting the interval value. If

a coarse-grained interval (one minute or longer) is chosen, it would

have low cost but the inaccurate value. If a fine-grained interval

(two seconds or lower) is selected, the telemetry data value is more

accurate but it also increases the overhead of monitoring. Apollo

resolves this problem by using an adaptive and dynamic monitoring

interval, which could reduce the overall cost of resource monitor-

ing. To increase the accuracy, Apollo utilizes Delphi, a machine

learning model, which could generate predicted value between two

measuring intervals. In the other hand, LDMS store the monitoring

information into MySQL or flat file storage, and similarly Ganglia

uses RRDtool (Round Robin Database) to store and visualize the

historical telemetry data, which increases the data access latency. In

this work, SCoRe, a distributed data store based on a graph structure

utilizing an embarrassingly parallel Pub-Sub streaming paradigm, is

utilized to transfer and store telemetry data. This ultimately reduces

the telemetry data access latency while increasing I/O throughput.

6 CONCLUSIONAND FUTUREWORK
ThispaperhasproposedApollo, a lowlatencyMLassistedmiddleware-

centricmonitoring service. It addresses the low latency requirements

of middleware libraries using Pub-Sub semantics and can serve data

with latency around 0.1ms. It provides a current view of the system

resources using adaptive measurement intervals which have been

shown to improve the overall accuracy of telemetry data collected

compared to static intervals. It further reduces the overhead of mon-

itoring using Delphi, Apollo’s MLmodel that is fast to train, causes

significantly less interference, and can predict any nonrandom time-

series data. This paper introduced some I/OCurators to present high-

level metrics that can aide middleware libraries in their decision. It

also shows howmiddleware libraries can use Apollo to offset some

of the overheads in decision making while being resource aware. Fi-

nally, it shows that, compared to state-of-the-artmonitoring libraries

like LDMS, Apollo provides lower latency with only 7% extra over-

head while maintaining a recent view of the system resources. The

experiments shown for Apollo are indicative of the potential in opti-

mizing the collection of telemetry data and show how it can aid mid-

dleware libraries tomakemore optimal decisions. The source code is

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

157

available at https://github.com/scs-lab/Apollo for the different com-

ponents in Apollo. We acknowledge that some of the I/O Curators

will need to be tweaked by the user to ensure that the metrics accu-

rately describe what is needed by the middleware library. We could

also improve the adaptive interval heuristic by using amore intricate

heuristic metric inspired by entropy changes in physics [16]. We

could also improve the way monitoring is done using KProbes [55],

which can further reduce the minimummonitoring bound.

ACKNOWLEDGMENT
This work is supported by National Science Foundation under OCI-

1835764 and CSR-1814872.

REFERENCES
[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S.

Monk, N. Naksinehaboon, J. Ogden, et al. 2014. The lightweight distributed

metric service: a scalable infrastructure for continuousmonitoring of large scale

computing systems and applications. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 154–165.

[2] A Arghavani, E Ahmadi, and A. Haghighat. 2011. Improved bully election algo-

rithm in distributed systems. In ICIMU 2011: Proceedings of the 5th international
Conference on Information Technology &Multimedia. IEEE, 1–6.

[3] 2020. Asonje/pat: performance analysis tool. Intel, (2020). https://github.com/

asonje/PAT.

[4] G. Awate, S. Bangare, G Pradeepini, and S Patil. 2018. Detection of alzheimers

disease frommri using convolutional neural network with tensorflow. arXiv
preprint arXiv:1806.10170.

[5] S. Bai, J. Z. Kolter, and V. Koltun. 2018. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

[6] F. Beneventi, A. Bartolini, C.Cavazzoni, andL. Benini. 2017. Continuous learning

of hpc infrastructuremodels using big data analytics and in-memory processing

tools. InDesign, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 1038–1043.

[7] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres, and

A. Torrez. 2012. Storage challenges at los alamos national lab. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1–5.

[8] G. Berriman, J. Good, A. Laity, andM Kong. 2008. The Montage image mosaic

service: custom imagemosaics on-demand.Astronomical Data Analysis Software
and Systems ASP, 394, 2.

[9] E. Betke and J. Kunkel. 2017. Real-time i/o-monitoring of hpc applications with

siox, elasticsearch, grafana and fuse. In High Performance Computing. J. M.

Kunkel, R. Yokota, M. Taufer, and J. Shalf, editors. Springer International Pub-

lishing, Cham, 174–186. isbn: 978-3-319-67630-2.

[10] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pandurangan, and

V. Balakrishnan. 2016. Understanding performance of i/o intensive container-

ized applications for nvme ssds. In 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC). IEEE, 1–8.

[11] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. 2018.

Rock you like a hurricane: taming skew in large scale analytics. In Proceedings
of the Thirteenth EuroSys Conference, 1–15.

[12] A. Biswas and A. Dutta. 2016. A timer based leader election algorithm. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld). IEEE, 432–439.

[13] S Bohm, C. Engelmann, and S. L. Scott. 2010. Aggregation of real-time system

monitoring data for analyzing large-scale parallel and distributed computing

environments. In 2010 IEEE 12th International Conference on High Performance
Computing and Communications (HPCC). IEEE, 72–78.

[14] P. Boyle, M. Chuvelev, G. Cossu, C. Kelly, C. Lehner, and L. Meadows. 2017.

Accelerating hpc codes on intel (r) omni-path architecture networks: from

particle physics to machine learning. arXiv preprint arXiv:1711.04883.
[15] S. Byna, J. Chou, O. Rubel, H. Karimabadi,W. S. Daughter, et al. 2012. Parallel I/O,

analysis, and visualization of a trillion particle simulation. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–12.

[16] Y. Cao,W.-w. Tung, J. Gao, V. A. Protopopescu, and L. M. Hively. 2004. Detecting

dynamical changes in time series using the permutation entropy. Physical review
E, 70, 4, 046217.

[17] D.-M. Chiu and R. Jain. 1989. Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks. Computer Networks and ISDN
systems, 17, 1, 1–14.

[18] H. Devarajan, A. Kougkas, K. Bateman, and X. H. Sun. 2020. Hcl: distributing

parallel data structures in extreme scales. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER), 248–258. doi: 10.1109/CLUSTER49012.2020.
00035.

[19] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun. 2020. Hcompress: hierar-

chical data compression for multi-tiered storage environments. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 557–
566.

[20] H.Devarajan,A.Kougkas, andX.-H.Sun.2020.Hfetch:hierarchicaldataprefetch-

ing for scientific workflows in multi-tiered storage environments. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 62–72.

[21] M. Fahey, N. Jones, B. Hadri, and B. Hitchcock. 2010. The automatic library

tracking database. Proceedings of the Cray User Group.
[22] A. Fuchs and D.Wentzlaff. 2018. Scaling datacenter accelerators with compute-

reuse architectures. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 353–366.

[23] A. K. H. Devarajan and X. Sun. 2020. Hreplica: a dynamic data replication engine

with adaptive compression for multi-tiered storage. In 2020 IEEE International
Conference on Big Data (Big Data).

[24] IIT. 2019. Ares cluster. http://www.cs.iit.edu/~scs/resources.html#content6-8p.

Accessed: 2019-04-24. (2019).

[25] 2020. Introduction to redis streams - redis. redislabs, (2020). https://redis.io/

topics/streams-intro.

[26] R. Izadpanah, B. A. Allan, D. Dechev, and J. Brandt. 2019. Production applica-

tion performance data streaming for systemmonitoring. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), 4, 2,
1–25.

[27] X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X.Wang, N. El-Sayed, J. Zhai, W. Liu, and

W. Xue. 2019. Automatic, application-aware i/o forwarding resource allocation.

In 17th {USENIX} Conference on File and Storage Technologies ({FAST} 19), 265–
279.

[28] A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh, and X.-H. Sun.

[n. d.] Chronolog: a distributed shared tiered log store with time-based data

ordering. Proceedings of the 36th International Conference on Massive Storage
Systems and Technology (MSST 2020).

[29] A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun. 2019. Labios: a distributed

label-based i/o system. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’19). ACM,

Phoenix, AZ, USA, 13–24. isbn: 978-1-4503-6670-0. doi: 10 . 1145 / 3307681 .

3325405. http://doi.acm.org/10.1145/3307681.3325405.

[30] A. Kougkas, H. Devarajan, and X.-H. Sun. 2018. Hermes: a heterogeneous-aware

multi-tiered distributed i/o buffering system. In Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
219–230.

[31] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead. 2018. Harmonia: an

interference-aware dynamic i/o scheduler for shared non-volatile burst buffers.

In 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
290–301.

[32] C. Li, Y. Wang, Y. Chen, and Y. Luo. 2019. Energy-efficient fault-tolerant replica

management policy with deadline and budget constraints in edge-cloud envi-

ronment. Journal of Network and Computer Applications, 143, 152–166.
[33] W. Liang, Y. Chen, and H. An. 2019. Interference-aware i/o scheduling for data-

intensive applications on hierarchical hpc storage systems. In 2019 IEEE 21st
International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 654–661.

[34] 2020. Libuv/libuv: cross-platform asynchronous i/o. libuv, (2020). https://github.

com/libuv/libuv.

[35] J. Lin, S. Williamson, K. Borne, and D. DeBarr. 2012. Pattern recognition in time

series.Advances in Machine Learning and DataMining for Astronomy, 1, 617-645,
3.

[36] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and K. Harms.

2018. TOKIO on ClusterStor: Connecting standard tools to enable holistic I/O

performanceanalysis.Technical report. LawrenceBerkeleyNationalLab.(LBNL),

Berkeley, CA (United States).

[37] M. L. Massie, B. N. Chun, and D. E. Culler. 2004. The ganglia distributed moni-

toring system: design, implementation, and experience. Parallel Computing, 30,
7, 817–840.

[38] S. Méndez, D. Rexachs, and E. Luque. 2012. Modeling parallel scientific applica-

tions through their input/output phases. In 2012 IEEE International Conference
on Cluster ComputingWorkshops. IEEE, 7–15.

[39] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. 2019. Importance

estimation for neural network pruning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 11264–11272.

[40] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller. 2010. Characterizing

the energy consumption of data transfers and arithmetic operations on x86- 64

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

158

https://github.com/scs-lab/Apollo
https://github.com/asonje/PAT
https://github.com/asonje/PAT
https://doi.org/10.1109/CLUSTER49012.2020.00035
https://doi.org/10.1109/CLUSTER49012.2020.00035
http://www.cs.iit.edu/~scs/resources.html#content6-8p
https://redis.io/topics/streams-intro
https://redis.io/topics/streams-intro
https://doi.org/10.1145/3307681.3325405
https://doi.org/10.1145/3307681.3325405
http://doi.acm.org/10.1145/3307681.3325405
https://github.com/libuv/libuv
https://github.com/libuv/libuv

processors. In International conference on green computing. IEEE, 123–133.
[41] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu. 2017. Conmon: an automated

container based network performance monitoring system. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 54–62.

[42] J. P. Morrill. 1998. Distributed recognition of patterns in time series data. Com-
munications of the ACM, 41, 5, 45–51.

[43] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz. 2020.

Dcdbwintermute: enabling online and holistic operational data analytics on hpc

systems. In Proceedings of the 29th International SymposiumonHigh-Performance
Parallel and Distributed Computing, 101–112.

[44] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn,

M. J. Anderson, Y. Yao, P. Dubey, et al. 2015. BD-CATS: big data clustering at

trillion particle scale. In SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[45] M. M. Rahman and A. Nahar. 2010. Modified bully algorithm using election

commission. arXiv preprint arXiv:1010.1812.
[46] T. Ronconi et al. 2020. From cosmic voids to collapsed structures: hpc methods

for astrophysics and cosmology.

[47] A. Sagheer and M. Kotb. 2019. Time series forecasting of petroleum production

using deep lstm recurrent networks.Neurocomputing, 323, 203–213.
[48] S. Selvin, R Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman. 2017.

Stock price prediction using lstm, rnn and cnn-slidingwindowmodel. In 2017 in-
ternational conference on advances in computing, communications and informatics
(icacci). IEEE, 1643–1647.

[49] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,

H. Jin, E. Hwang, N. Shingte, et al. 2019. Presto: sql on everything. In 2019 IEEE
35th International Conference on Data Engineering (ICDE). IEEE, 1802–1813.

[50] J. Sloan, R. Kumar, and G. Bronevetsky. 2012. Algorithmic approaches to low

overhead fault detection for sparse linear algebra. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012). IEEE, 1–12.

[51] R. Stephens. 1997. A survey of stream processing.Acta Informatica, 34, 7, 491–
541.

[52] P. Subedi, P.Davis, S.Duan, S. Klasky,H.Kolla, andM.Parashar. 2018. Stacker: an

autonomic data movement engine for extreme-scale data staging-based in-situ

workflows. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 920–930.

[53] S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, and A. Moody. 2016. Manag-

ing i/o interference in a shared burst buffer system. In 2016 45th International
Conference on Parallel Processing (ICPP). IEEE, 416–425.

[54] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an

academic hpc cluster: the ul experience. In 2014 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 959–967.

[55] V Vishwanath, W Feng, M Gardner, and J Leigh. 2006. A high-performance

sensor for cluster monitoring and adaptation. EVL technical document.
[56] T. Wang, S. Byna, B. Dong, and H. Tang. 2018. Univistor: integrated hierarchical

and distributed storage for hpc. In 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 134–144.

[57] W.Wang. 2003.Modelling conditionmonitoring intervals: a hybrid of simulation

and analytical approaches. The Journal of the Operational Research Society, 54, 3,
273–282. issn: 01605682, 14769360. http://www.jstor.org/stable/4101621.

[58] V. M.Weaver. 2015. Self-monitoring overhead of the linux perf_ event perfor-

mance counter interface. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 102–111.

[59] J. Xia, D. Guo, L. Luo, and G. Cheng. 2020. Topology-aware data placement

strategy for fault-tolerant storage systems. IEEE Systems Journal.
[60] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,

J. Zhai, et al. 2019. End-to-end i/o monitoring on a leading supercomputer. In

16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19), 379–394.

[61] S. R. Young, D. C. Rose, T. Johnston, W. T. Heller, T. P. Karnowski, T. E. Potok,

R. M. Patton, G. Perdue, and J. Miller. 2017. Evolving deep networks using hpc.

In Proceedings of the Machine Learning on HPC Environments, 1–7.
[62] 2020. Zabbix. Zabbix, LLC, (2020). https://www.zabbix.com/.

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

159

http://www.jstor.org/stable/4101621
https://www.zabbix.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Monitoring Services
	2.2 Predicting Time-series Data

	3 Apollo
	3.1 High Level Architecture
	3.2 Improved Storage Layer
	3.3 I/O Insight Curation
	3.4 High Accuracy With Low Monitoring Cost

	4 Evaluation
	4.1 Methodology
	4.2 Reducing Telemetry Data Access Latency While Increasing I/O Throughput
	4.3 Reducing Overall Cost Of Resource Monitoring While Increasing Accuracy
	4.4 Real Workloads

	5 Related Work
	6 Conclusion and Future Work

